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Chapter 1

Lagrange Jj%f

L1 2fh)™ L Asbs
L11  25iyor 2

TEidhzE T, REISFR A2 (constraint).

AR PRI S H n AR, IR AHE = e, BGE @ AN SRR 1, 1 =
1,2,..., n, HERZ 80 Xi, vis Zio

PUE ST sy o N =g [T e

f=r,..., ), (1.1.1)
MIFRH g W 2R (sceleronomous constraint) 55 e 250 AR LYoy & i St a), B
f=rtry,..., ), (1.1.2)

AR AARE H 200 (rheonomous constraint) 5 3£ & 2970 .

AR, R AFRA R SIE, B 0f /0t = 0, Wil WA LR J5 REA R ) A2 1k, 21
SE . T AEE & LA R, B XTI ¢ ek gL, B 0 f /0t # 0, WA B ReAE b, 29k
FEM.

BETRBBEWAGT. W& 11 R, KR L —3EELE O SIRIMAT, e 2RI,
TGRS, L — i (x, y, 2) LR X7 + 37 + 22 = 1P,

A 11— EAE O R RIPERT

FaE 1.2 R, K8 [, —imBE @7 O ST RaE, R RT AR, SO D) — i i
(x,y,z) ﬁé/‘jﬁi )C2 + y2 + Z2 < 120

o,

K120 il ETE O miRss

1



2 CHAPTER I. LAGRANGE 71 %

X AR DA 7 SN B AR PR3

ft,ry, ..., o, Fl, ..., ¥,) =0 (1.1.3)
oA MIZy R (bilateral constraint), <55 SR §il{E T &4, AR EERIAHR. 1M
ft,ry, ..., r,Fp, ..., i) >0 (1.1.4)

FRAAMIZ)A (unilateral constraint), 7] DAYERE HTRIEET 20 . A BMAREIEA. £ <0,
A DA A R 2 R [ R LA —1 44k

At
fry,. .., r,) =0 (1.1.5)
LM Z)3K (geometric constraint),
f,ry,. .., T, .., r,) =0 (1.1.6)

sy 2k (differential constraint) =iz 2% (Kinematic constraint).
JUMTAHRAS 2 A 3B, T 20 e S B o R L Z0R f (¢, 1) = O BIIXS RS a] £ 5K, 15

df af Zafax 8f@+8_f%
0ox 0t dy ot 0z Ot

Z( _y+ﬂz) 0, (1.1.7)
0z

iR EHRBRN X BB, TRJUTAR AR AR AW, Wae vl HZRRHAE T 6,
WA IR R TAE T . T2, MU At nl DA 2 528523 (holonomic constraint) 7]
JE5e %23 (nonholonomic constraint), 5g%& 245 B a] X s [B] B4 OB o 203K, FRJ LT 293
A 5 B A o B 0] 56 I ) B0 AR AR 0

DA SR ATRI J 22 R B PR 5E K &5t (holonomic system), Az Jy2f 1k R HRFR AL 521

%% (nonholonomic system).

1.1.2 )~ S Asbs

REMEME—Hf & RGBT AL R, BRI LB (generalized coordinate). | SCARFRI

HWA—E R K, WA DU A, g, IR ENE, | SUBIR AN EEET 250 A

BN s X n ASFUSHRI RS, KA RN 3n, B2 0 TR, REME I ES L,
Bl s = 3n — 5B 1A% < 3n.

e 1.3 P, $8K00 Ty sgseb, 6 e SCARAR, Mt n] DABC x hy) SCARAR, RO EATIHE
XA R P ERRME /Y. (B2, (x,y) 1y AR SCBAR, ROMTFAE SRR A — = y 1
L



12 Eshja

.l: 0
®
K 1.3: B

Lagrange' ¥ 5 FIZF 5 qo 88 a A SRR, Hofr o = 1,2, ..., s, | ABKRAFI LR

S, BIERE] g o, FRR) L) (generalized velocity).

1.2 By

1.2.1  JATEXNE S 58
FAVAGE, T ¢ 2R R R, Kz ¢ iR, A AR drg, BITE ¢+

dr 520 A

FRREN 1 + drj. A ECERTEIAAE, B 6t = 0, WHAG 4R AR B9 or, FRBALRE (virtual
displacement). X§TEHAH (0f/0t = 0), Wik 2Vi, FERTAZE (ZEH) MIEN T, 29845 6
M BT d 2Ry, I, WK AR or; BMCESENIR dry; F4EE. Xt TRE 4%,

SET R A A AL AN F Y
4l Newton Jj2£ 8 X, A MEY) (virtual work)

n
oW = Z (Fl + Rl) . 6ri,
i=1

Hr Fi 238077, R 2457, 2

Zn:Ri . 51’,’ =0
i=1

HIZRPR BRI (ideal constraint), B[ 245 I 6 E A A2 T E R 22
HET, 5 R FAR AR N R RS A

SW = Z F,; - or;.
i=1
A 0W =0, Bi152 g D58 (principle of virtual work)

ow = iFl '5I'i =0.
i=1

"Rk B9 H, Joseph-Louis Lagrange, J5i4; Giuseppe Luigi Lagrangia, 1736.01.25—1813.04.10
Py R SR, Ja AR E .

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

s BHRMEES
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M 1.1
RGALLIR AV GOE T 4ERp-F A 0 sE 2 55 1 2

Z F; - or; = 0. (1.2.5)
i=1

1.2.2 )™ SCAEhR B 10 R S

WA R 2, WTOVHE S0 SUASR R R0 S0 17 = w41, ), K
i

s
(91’,' 61‘1'
dr; = —d —dzr. 1.2.6
T ;laqa da+ (1.2.6)
RSO Ty, WFZI AT o = 0, BIAR3| A%
- 51’1' éri = al'i
or; = 0 ot = 0qq. 1.2.7
r; (; ErD qa t / (; 044 qda ( )

n s or, s n or,
sw=>S"F,- 60 = ALY [F P 12.8
; QZ—:l 99q K a=1 (; 6qa) ! ( :
4 0qq = 0, B3 SLABFR R 1) 2 JR B
>F;- ori _q| (1.2.9)
i=1 09 a

o) A RIS R A, IR A S SRR, KRR ) (generalized force), iC
Qo Bl

0u =W 250 (1.2.10)

TERL, W) SCARARA F BE AR A, IR A0 SOt IR 4d s ) SR AR B, IR A )
SCHHA SRR WA, ) AR EIER A, i — A k.

1.2.3  RaFRSE B IE R
ICHREN V, WT R RS, A

(1.2.11)

Fi= V= _(8V. ov . 8Vk)’

+
0)C,'l Gy,-‘] (9Zi
Rl (L2011 My = xii + yij + 2k AUAK (1.2.10) , 15

QQZZ— 1A% (9)6,' + oV (9y,- + oV (9z,-
0x;0qa 0yi0qa 02i0qa




1.3. EULER-LAGRANGE 7 #2 5

__V (1.2.12)
dqa

RPHIERSE R GE N 1 Al 5 1

— =0| (1.2.13)

1.3 Euler-Lagrange Jj 4

1.3.1 d’Alembert J5i3j
& Newton Jy2zrf, XFORF R 48, Hazgh ik
F,+R;=m¥;, i=1,2,...,n (1.3.1)
Hop F; froh 800, Ry BRNZIH ) (ZANALIREN J1) . AWk m¥; 30555700, BRI
A1, 1%
F; +R; —m;¥; =0, (1.3.2)

Hrp —m;i; 7ol d’Alembert 1514 77, i mIA % T X5tE d’Alembert J5i# (d’Alembert’s
principle), 5 f Lagrange-d’Alembert J5i#i (Lagrange-d’Alembert principle). X}, 3/
JIEE SR T F80 07 IR TR A R 2L FAE R A 1)

il (1.2.8) S 2, ZBEA0 7, 15

C . > Ir;
0= ; (F; — m;¥;) - aZ=1 8;a5qa
S

- Z Z(Fi — m;i;) - %] 0qa

—

S

I
-
1=

=
|
|2
|
1=
K
o
QD
S
(e %)
Q

S
“ol
—_
~
Il
—_

(1.3.3)

Il
Q
Q
|
1=
E;
=
|
Q| =
Q ~
S ——
>
R

S
Il
—_
~
Il
—_

WAS B — B 8 125 5
N ory
Qo — ;miri : a0

1E T —/ N SAE XA T

=0, a=12,...,s. (1.3.4)

1.3.2 %5—2k Lagrange Jj;jf#
FeuE A~ A .

MR 1.1
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d 61’1' _ 61’1
UEW]. r; XPWFAR S, A
ar, arl i
aqa (1.3.6)

ﬂu%th l..l = l..l (t,qla"'aqS’qla-'-7qs) Y_‘ jCj:E'J ql,""qS7q1’--"qs ﬁj\%'haj{j Q7q'°

4 Or;:/0q o SRS, 15
d 8r,~ Gr, arl .
dr (6qa) (aqa) Z Bqﬁ (8%)

I;

(1.3.7)

R 1.2

or; or;
d = r c (1.3.8)

[RZR

(1.3.9)



1.3. EULER-LAGRANGE 7 #2

)

T (Z m;r; - ) Zmlrl + Z m;r; -

i bA, 3 (1.3.4) WA A

d 1 X al‘i L . d 81’,
Qa—a(;miri'@)+;mz1’z'&(aqa

AR (1.3.5) 1 (1.3.8), 15

S HE B fE

Rt — A5 2

=0|,

0,-3 jﬂl N oT
¢ dt 0qda 0qa

(1.3.10)

(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

Xt ZEAE A ) Lagrange 782, IMi55—2% Lagrange Jjfi (Lagrange’s equation of the

first kind). H 0T /0q o i)™ X Fi (generalized momentum).

1.3.3 Euler-Lagrange j;##

L EBN IR I, B Qo = =0V /0q o, WIHRRESC (1.3.14), FH
i oT 3 oT N oV
dr 8qa Bqa aQQ

i oT B o(T-V)
04 a 0qa

=0

=0.

XHNHREV =V (1, q), NE&)] SGEE, FilA 0V/0qa = 0, T2

d[o@-V)] a(T-V)
W |-

=0.
04 q 0qq

2= -0
0qa

)

d(oL\ oL
ACER

(1.3.15)

(1.3.16)

(1.3.17)

(1.3.18)

H L nyfif Lagrangian, X5t 255 3% Lagrange Jj ¢ (Lagrange’s equation of the second
kind), t111] Euler-Lagrange J; ¢ (Euler-Lagrange equation), #7153 T {#5F &/ Lagrange

WEER



8 CHAPTER I. LAGRANGE 71 %
A PAS Newton Fy=aitfxt e, 50 (1.3.18) pyP L SC—H T8,

1.3.4 g Asbs s 8 i 4L

#r Lagrangian L RS H—)" SUAAAR g o, Bl OL/0q o = 0, WK q o I A bs (ignorable
coordinate)’. izt (1.3.18), A[f4

d (5_L) 0. (1.3.19)
0qa
PR A 5, ST E R &
AL
Pa=o—= HEL (1.3.20)
Ga

XFR A ia gy B (constant of motion). H g R4 A0iz sl K <FIE &, AR 0T AFR Nz s # %

1.3.5 ) 3 hgH:
i (1.3.14), 1Tf5

d [ oT oT )%
— - S A 1.3.21
dr (841'0) 0qqa 0qq ( )
YT b)) S o HRF, 15
\[d (8T ] >y oT 1 74
— | — 'a_ —'a:— —.a, (1322)
;l[dr(aqa) 107 Ligg, 1" ™" Lidg,?
XK
5[d (or >y d (0T >y oT
Rl PR | N Bl ey 3 1.3.23
azl[dt((')q'aq )] azldt(é‘q'a)q +;aqaq (1.3.23)

AR (1.3.22) 1, 4
. . oT . 59V
QZ: [_ (@QQ)] Z Ga Z (9q_aqa = - ; aq—aqa- (1.3.24)

BAERESRET =T (1, 9, ¢) M HIEFAL

dr _or < oT > 0T
—q — 1.3.2
& "ot aqaqa D i (1.3.25)

FghE V = V(1, q) XRS5

dv. oV < 9V
_— = g 1.3.26
a o Z 8qa 1" (1.3.26)

2 ST B g AR BRBAEER A, BN R A MK



1.3. EULER-LAGRANGE 7 #2 9

gt (1.3.24)—(1.3.26), 1%

N (d oT dT7 9T dv 9V
— |- — + — , 1.3.27
al(dtaq'a ) a T T T a T ar (1.3.27)
Ell]
d [« aT AV -T) L
— _'a—T V == -, 1328
ar (a_ 9galt T ) ot ot (13:28)
AL  dT
XVTE‘qu”TLX{jJEpQ 9 _ﬁ,ﬁﬁl/‘/\
d [+ , L
o (Zpaqa — L) =-=- (1.3.29)
ST S RE R
H= Zpac]a, ~L|, (1.3.30)
a=1
Ul
dH oL
— = 1.3.31
dt ot ( )
n ‘ AL
# L REATE ¢, B YT 0,
dH
— =0, 1.3.32
pP ( )

BES H .
Wk vy = r (1, q) AR, A 36

| or; or; i or; c?rl i
= 5 ;miri I = E Elm ( Z aqa E aqa
or; 61‘, (91', g ,- or; r- )
"2 Z ( ' Oqa, X 9ga aZﬁZ B)
1 < ar; Or; >N Ir;  Or; N> Jr; Ory
_1 | or 5 Om or
22’” (8t or Zi ot aqaq”ZZ 0da aqﬁq“qﬁ)

ar; ar, > Ir;  Or; 1 N> Jr; Or;
i _ + —m; (¢ . 1.3.33
22 ot o Zigr 9g, 1T 2" QZZU; 0qq gz P (1.3.33)

bR BRI IR . R R, 2k To, T, To, WE T =To+ T+ Th. To M T 2
S E[BECEAE T i
FIA—AEH,
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5|3 1.1 Euler X REEIR
BES (et o) S ARG m TR, B

f(/lxl,. o .,ﬂxn) = /lmf (xl,...
k)

Zn:xigi =mf.

i=1

fifiE Euler 55k sREEBE, A

1 LRI 15

. E)T, _ . 0(T0+T1+T2)
t0= 2= 5,

Bt A

H = —qa—T+V:(T1+2T2)—(T0+T1+T2)+V

=T -Ty+V.

W v = 1i(q) AR AW, A2 (1.3.33) HFF ), 42h

R L
—2' m; 4 ErD aqﬁQ(zCIﬁ,

i=1 a=1pB=1
i Buler 5K BRECEPE, 715
S
oT
_.qa' = 2Ta
a=1 qa

Jir A
H=2T-T+V=T+V.

MARFRAN IR, ) SRR H O ARG RIPUNAE .

1.3.6 Euler-Lagrange Jj; i H

X5tse Euler 55k HEce ! (Euler’s homogeneous function theorem).

Ga = 0Ty + 1T, + 215 =T + 2T5.

CHAPTER I. LAGRANGE 71 %

(1.3.34)

(1.3.35)

(1.3.36)

(1.3.37)

(1.3.38)

(1.3.39)

(1.3.40)

(1.3.41)

AT Az ] Euler-Lagrange T FEsRERARAR R NI L0 H . FERRARAR AR R, 47 dr = dre, +
rdfeg + rsinfdgey, | v = dr/dt = Fe, + rfeq + rsinfdey. WEAT"XAHE qr =1, qo =
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0,94 = ¢, mL (1.3.14), W[5

oW =F - or
= (Fre, + Fgeg + Fyeyp) - (6re, + réfeq + rsin05pe,)
= F.0r + Foré6 + Fyrsin0o¢

= 0,0qr +090q9 + Q306q 4. (1.3.42)
B S0y S B % &
Q, = Fy = may,
Q¢ = For = magr, (1.3.43)

Q¢y = Fyrsinf = magrsinf.
N A A5l AE
T = %m (fz + 262 + P2 sin? 9¢32) , (1.3.44)
ARA (1.3.14) , ARG )

d (0T\ aT
Qr-a(ﬁ)‘ﬁ

= m% (7) - g% (r292 + 72 sin? 9(/32)

= m (f _ 162 — rsin? 9¢32) , (1.3.45)

00§ 5)-5

:m% (r 9) —ﬂi (r231n 0¢ )

2 06
=mr (2#9' + 76 — rsinfcos 0¢2) , (1.3.46)
o, 4 (o) o
T dr\ag) ¢
d .
= ma (r2 sin’ 0¢) —
= mrsin 6 (27 sin 0¢ + 2r cos 60 + r sin 6¢) . (1.3.47)

FHEI A5 fin S5 70

ar = i — r6? — rsin® 662,
ag = 0 + 270 — rsin 0 cos ¢, (1.3.48)
ag = 2 sin0¢ + 2r cos 00 + r sin 6.
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1.4 PRtk
% Lagrangian BARSEREIRIE SN, & S8 LahR, BRMTIE, XHLIM TR/

XTPRPE (symmetry), RIZERFpAE e (transformation) T, 2451 FEAEYE (invariance).
X FPAE R Ak BRAEH (symmetry transformation).

1.4.1 Noether ¢

¢ Lagrangian L(t, q, q) f{iid—EH RS, wIos5/NVE

t—>f:t+26i§i (t,q(1)), (1.4.1)
i=1
Qo= Qo = qa + ) €Mai (£.4(1)), (1.4.2)

i=1

HoP € SRICIINEEL, Ei i BIIINERL. M6 = 0 W T = 1,3, = qa» BITES5/IVESE
WS WEHURN Lagrangian % T (7,7,3), WA RAm(R i

S = /QL(t,q,q) dr = /IZZ(E@&) i =S5, (1.4.3)
13 3]
hrd
/tzf(z,a,a) dr = /tzz(i,a,a) a g, (1.4.4)
f | d

Jt PA

1 (E, 7. a) % = L(1,9,9). (1.4.5)
PUES

L(t,q.9) = L(t,4,49), (1.4.6)

WFx L #7840 HA A (invariance), {15

_ dA(z,
L(.q.4) = L(g,d) + o), (14.7)
WIFR L 727224~ B A BpAPE (covariance). AT X WAL BT 9242 H PR A i BRAE ik (symmetry
transformation).
# (1.4.7) FR A (1.4.9), 15
o _ -\ dA(Lg)|dr _
[L (;, 7, q) +— ] = L(t.4.9). (1.4.8)
PREE—Fr /e, st (1.4.1) 715
dr o dg
P =1+ ) ¢ TR (1.4.9)



1.4, xF ARt

13
. _dﬁ_a_dqadt
=" " @
. : -1
. dnai o dg
= qa+;el " (1+;eldl
V. . dnaiﬁ o dé
~ i 1— 1
s S| - S
nal . dé:l
=~ a 1 a . 1410
q +Z€( —9q dt) ( )
H
. 0L _ SN[ oL oL (-
L(t,q,q)—L(t,q,q)+5(t—t)+ l[aq—a(qa—qa) 861—.@(%—%)]
N aL dna/i d‘fl
—L a. 161 i - .a_ 5
oo G Sose £ 5 Fona 2 (505
(1.4.11)
dA () dA f,a)g
i t dz
d o d¢;
. 1=  —=
d
at§l+z n(ll
11, (1, 1.4.12
dt €l11;(t, q), ( )
A > aA e .
He I1;(t, q) = i+ 6 aio B EPHCAZ (1.4.8) 1, 15
oL oL (dnqi .dél
L v iSi I i A -
(tqq)+ Zleg +;Ze[ a+8qa(dt dt)]
d r r dé:
11, = =L 1.4.1
dt;:E (1.9) = ( Z d) (1.4.9). (14.13)
LSt
L [ oL AL (dng; . dé& dé; dIT;
& i — — o= L=t =-——1L 1.4.14
6t§l+;[8qanal+6q’a( dr q’dt)] ra T Tw (14.14)

X4 ER L A, T S e ik at, #n] AZR g e — eR 00 IR IR Y 4 o, Ul



14 CHAPTER 1. LAGRANGE #
AR W RS, R RESISE T1; (2, ) MRk X

L < L L
0 (a ; 0 q'a), (1.4.15)

d
—L(t,q,q) = — + E — o+ —
gltad == 0da 1% " 94a

a=1
d x oL . S [(d oL : OL (dnai . . dé
T Z M—.a(ﬂm‘ = qa&i) = Z [(E@) (Nai — Gaki) + 9du ( e Gadi — QQE)] ,
(1.4.16)

a=1 a=1

KA (1.4.14) W, 152 L/ 01, 15

dL >\ [ AL . AL . [ AL AL (dng; . dé& dg;  dII;
Efi—Z(—Qa§i+—Qa§i)+ [—Um’+—( = -4 —)] +L——+ =0

£4\dqq 94 o — |9qa 0o \ dt “dr dt  dr
(1.4.17)
d o [ 9L L (dnai d¢;
— (L& +11; —— (Nai = Gai) + 75— —qa— —Gabi|| =0
= dt( & + )+OZ:1[6%(77 q§)+a%( v deg qf)]
(1.4.18)
d | dL >~ [ oL d oL
— — (Nai — qaéi) + L& +11; —Mai —4a&i) — | —=7—| Nai —Ga&i)| =0
dtLﬂa%(n Gafi) + L& + +;[8qa(n 4 aéi) (dta%)(n q&)]
(1.4.19)
d | IL N (0L d IL
- 7 (Nai —qGaéi) + L& +11; — — =7 | Mai — Ga&i) = 0.
m Lzla%(n Gaki) + LEi + +a:1(6(I0 dtaq(,)(” qati)
(1.4.20)
Y 25015801 2 Euler-Lagrange K2}, H_ExCUR1, fAEE 804k
5N oL _
Ii(t,q) = — (Nai — Goéi) + L& + 115, (1.4.21)
= 9qa
X
oL o v
oL _ o0 io—H|=pg. 1.4.22
aq.a aqa (azzlp vq o ) Pa ( )
Jir A
S )
Ii(t,q) = Zpa(ﬂai - qo&i) + (Z Pada—H|& +11;
a=1 a=1
= Naipa - HE + 1 (1423)

a=1

X3t 42 Noether 8 (Noether’s theorem)’ .
RPN, WG A = 0. QERIUEREFRE A ne; = 0, WA I; = —HE; . WAL

348 Amalie Emmy Noether, 1882.03.23—1935.04.14, f5E %% .



1.4, xF ARt

{2 & = 0, W Li = ) NaiPa-
a=1

15
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Chapter 2
011

2.1 pafkmnE

2.1.1  pafkmnE

YEH J1mT PA9r25 43077 (central force) 5340 77 A0 1897 Al K 848 ) — 1~ [ % A5,
PRI A . TTAES . B, #REA 0T,

el 2,10 WA

e 2.1 PR, AR Z B AR A 01, JI005 TR 18 55— R M 5,
BT A 51k my F ma, ¥ SRR Z RIIALSR, 11 il v 43 A RO T BTG ALK, T
A

r| = r, Irp=- T, (2.1.1)
my1 + my my +mp
M
1, 1 5
T = Emlr] + Emzrz

1 m 2 m 2

_ 1! 2 2y Sy (- 1 2
2 mp + my 2 mp +mj

:l mimy .2
2my +my

17
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1.
= Eur’z, 2.1.2)

11
= — + — FRNZMETH (reduced mass). [H I, {4 i) AT DAL 1k

1

Hopp = B —
mp + my M mp mp

R R I B A

PSR T S A B RE

1.
T = Eﬂr'z, (2.1.3)

id me = my + my, FUOHIRTAAREREI IR R = (xc, Yo, 2c), WA Lagrangian
1

. 1 .
L= imch + E,ur’2 -V(r)

1 | .
= Sme (x§ + 92+ zg) +SH (fz + r2¢2) —V(r), (2.1.4)

R LA INE], o) AR
1

1 ,
H = Sm (xg +y2 + zg) + Su (r'2 + r2</)2) +V(r)=E (2.1.5)

EMPURAEMSE . DL, Az sh iU AE

E = %ﬂ (r'2 + r2q52) + V(). (2.1.6)

AR py = OL/0¢ = pur’e ~FHE, AP
r2¢ = h, (2.1.7)
Il

’ 1 .2 1p¢
E" =— +-——+V
M (r)
1, 1uh?
:E,ur +§r—2+V(}’)

1
= SHP + Ve (1), (2.1.8)

1 uh? ) .o Luh? .
Hrp Veg(r) = E'ur—z +V (r) A %34k (effective potential), Elur_z FEMAREE LS urd? =
HI? e
3 E"J%‘Hbo
.

X (2.1.4) AbFE, A

oL .
or M
oL 1%

J oL _ _o9v 2.1.9
or pure or’ ( )
dot_
aor M
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ov
LF(r)=—-—

P £ M Lagrange Ji#2, 1%

it — urd® — F = 0. (2.1.10)
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Chapter 3
Wi sl

3.1 Wah

301 R R

FIERE LR T 86

X HUE T R AR Mapg, HOAPRAE R, /) Map = Mpao

(3.1.1)

w30 R

or;
@=0 aqﬂ

Map = Z ml

qp=0

(3.1.2)

P AAEHRRREL Y = V(g) T THE g0 = 0 LLJRIT, 15

59V
V:M‘FW 222 6qa0qﬁ

X

a=1p=1

qda=4qp= =0

K HLE ST R Cap> HA AR RRAE [, /) Cap = CBao

21

(3.1.3)
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3L 3.2 5Pk F A

oV

—_— (3.1.4)
09,0493

Cap =

qa=qp=0

N R

BNAER) T SGEBEM IR WAL, $Re2 ) SUABARRY IEE K2, firPA Lagrangian L =T -V
T AR G BE IE TR B, BUAE T DASE

S S

1
L= 2 Mapqadp — 5 Z anﬁchQﬁ (3.1.5)
a=1p=1 a=1p=1

—

3.1.2  izadhilsr ik
=0 (3.1.5), W45

= 2, Mvade (3.1.6)
AR 5, 75
é%(ggi) Si(ii Yaqa) Ez'nyaqa~ (3.1.7)
FKE OL/0qy, FKK (3.1.6) vk—3L, A
5;;':“22 Cya9a- (3.1.8)

A Euler-Lagrange 5%, 15

D Myada+ ) cyada =0. (3.1.9)
a=1 a=1



Chapter 4

Hamilton Jj2#

4.1 Hamilton Jj#i

4.1.1 Legendre 254

wf=fxy), M

o 4o O gy
df = ('3y
wu=2L 2 —f IR 1w,y (I A v, x FERFO A 52

ox’
X:)C(l/i,y), v:v(u,y),

XIFERER f ATDAH u,y R, B f = f (x (u,y),y) = F (u,y), W

oF Ofax_ 0x

u  Oxou u£
OF _0f ox (9f a_x .
(9y T ox 6y 8y 6y

R (4.1.4) B, W7

v:—aiy(—F+ux):—§—i,
ﬁﬂ!ﬂg(u,y)=—F+ux=—f+g—fxo
X
g A u SR FHL, WA

dg 0

o -2 (—F

ou au( +ux)
S LI
T Tou T T e
L PP .
- T T

23

“4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)

(4.1.5)

(4.1.6)
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Ak
u(x.y) = Gféx, y), X () = og (u,y),
X u
b(x.y) = 6f((9x, y)’ = 10y = _0g (u,y)’ (4.1.7)
y oy
fx,y) = fx,y), g(u,y)=u-x(u,y)-F(u,y),

3ot phy — 2k N7 AR R F) Y — 2 T AR ) AR ¥, FRM Legendre 454 (Legendre transforma-

tion).

4.1.2 Hamilton J5#¢

S
A E X (1.3.30) H = Z Pafa — L, F> Hamiltonian .

a=1

XA HERG, F LT R x, y,u, v, f(F), g 5338 ¢, 9, p, p, L, H, W15

0L (4,q)
dg
0L (q,q)
dqg
=L(q,q),

r(4,q) = q(p,q) =

p(4,q) =
L(q.q)

T, 1

=

H(p,q)

p(p.q) = —8H(p’Q),

9H(p. q)

ap
(4.1.8)

dq

=p-q(p.q) — L(p,q).

_ 0H
CIa/— (9pa’

Pa=—7—

o (4.1.9)

0qa

Fr-~ Hamilton J;# (Hamilton’s equations)zi & [E )] Jj ## (canonical equations).

4.2 Poisson i< 5 Poisson g

4.2.1 Poisson 55
=1 (t,q9,p) @M=

df _of \
&= 2l s

 Hamilton A _EX, 15

STH] A — BRI, NS IR SR AT A5

(4.2.1)

pa'),

df 0f df OH
" Z( -

aqg 6pa/

_5_f
=2 + [f, H].

N T R BE, 5] A Poisson #5% (Poisson bracket).

of oH
0pa0qa

(4.2.2)
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25

R

W f g #REXT t,q, p BREL & X Poisson $5-54
of og of dg

[f.g] = 902 0p.  Opada. (4.2.3)
# fr8 h &R KT 1, q, p WRREL WA AT
M 4.1
[f,f]=0.
MR 4.2
[C, f] =0, H C 2HEL.
R 4.3 RITFRME
[f’g] = _[g’f]
MR 4.4 WL
[Cf.gl =Cl[f.g]l =1[f,Cgl, Htp C B#i%h. HA [f.g+h]l=1[f.gl+[f, Al
R 4.5 Leibniz #M (Leibniz rule)
[f.ghl =[f.glh+glf,h].
IR
_0f d(gh) Of 0(gh)
L7, ¢h] = 34 Opa OPa 0qa

_f (g oh\  of (g oh

_aQa (apah+gapa) Opa (aQah+gaQa)

_8f 6gh+6f 6h_6f ﬁgh_éf oh

B a‘Ia/ apa 361ag3]?a apa' a‘Ia/ 6Pagan

_(9f ds _Of B\, . (Of 9h _ of ok

" \0qa0pa  0padqa $\0ga 0pa  OPadqa

=[f.glh+glf,hl.

|
R 4.6
2[f gl = [6—f g] [ 8—g]- (4.2.4)
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LR
of og of og
[f 8= (3% Opa OPa 6qa)
3 82f o0g N af 0%g B *f dg B af 0%g
- 0t0qq 0pa 0qa0tdpy 0t0pa0qa Opa 0t0qa
9 (of of 9 (0g\ a (df _af 0 (og
= 99 (ar) Opa @ 0qadpa (az) pa (a:) 390 Opa0qa (81?)
of
-G+ |5
O
MR 4.7
0 0
P e A P e (425)
Pa da
8 4.8
[QQ, QB] = [paapﬁ] =0, [Qaapﬁ] =0ap- (4.2.6)
R 4.9 Jacobi fEZET; (Jacobi identity)
Lf, (g, H]] + [g, [h, f1]1 + [H,[f,g]] = 0. 4.2.7)

Jacobi {HZ5CFIEBH AT DA L Landau (1 €328y — . HApb sk FRrE S R trival 1),
LET)ETE:J\LT

FRPEE T 4.7, W PASE Hamilton HFEx (4.1.9) B

C]a = [Qa/,H] E)
4.2.8
{pa: [pa»H]- ( )

HHE f s s BB df [dt = 0 f [0t + [ f, H] = 0, [PA%%¢— T Hamiltonian:

dH 0H 0H

o = tHHI= 4.2.9)

pun
=
i

SR HES

o H AZ AW, W H 2iz23h#r, #2408 Hamiltonian Sp{HE.



4.3. 1fFR =732

27
4.2.2 Poisson 2B
T 4.1
FEE f, g AR EEE, W [ f, g] AR EHE.
UEW. 20
df _af
5 +[f,H], (4.2.10)
dg (')_g
==+ leH). 4.2.11)
PESR 4.9, 715
0=1[H,[f gll+[f g HIl + g [H, f]]
= [H,[f,gll + [f, g, H]] + [8.-[f, H]]
0 0
-t 11+ |72 4o
0 0
~(trgln + 7.5 4| 2y
0
= [[f,g]’H] + E[‘f’g]
d
= ~lf.g1=0. (4.2.12)
m|
4.3 il a e
4.3.1 il S 1R A R
EX 4.2: &t (action)
S = /QL(t, q,q)dt. 4.3.1)
YEH R AS 53
4]
08 = 6/ Ldr=0 4.3.2)
1

FR e a8 (action principles), 4 {F H 42 W i [E & AR~ Hamilton J5{8f (Hamilton’s
principle).
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4.3.2  fiE Al

#il 4.1
8 H &7 ¥ S Euler-Lagrange H#:.

fi. s (4.3.2), 5

5]
58S =6 / Ldt =0, (4.3.3)
1
AR SR IR T, 15
n g L oL
/ (a 8¢ o + 5%) dt=0 (4.3.4)
a=1
34
>y oL oL d d & 6L >y d (4L
IZ G = N Gy - 5 a, 43.5
Zi 94, Zaqadt T £194,"! ;dz(aqa) 4 (4.3.5)
NI Y
bld & AL > d( )
— Y —6¢q - Ga + —6qa dr=0 (4.3.6)
‘/t1 [dtazlaqa ;zldt 04 q Z ]
4]
>y oL b3y [d (oL oL
—6q,| - —|=]-=—"|6g,dr =0, 4.3.7
2.434,% ] / ;[dt(a%) aqa] ‘ #3D
S A s 2 B B, FTPA 0qa(t1) = 0qa(t2) = 0, FTPA
f oL aL
o dr = 4.3.
H 6q o 20T, A5
d (0L oL
— === =0. 4.3.9
(84a) aCIa/ ( )
O
i 4.2
i 7E H & R PEHE S Hamilton 572,
. B H=> pada—L, 0
a=1
4]
55:5/ (pada—H)dt =0, (4.3.10)
4]




4.3. kA2 R2
S SR,
th S
[ Y16 ada) - o111
i a=]
O0H

N OH
:/ [6paq'a + pPadfa — 6—(5[)(, - a—éqa] dr
P Pa qda

RN OH OH
:/ [paéqa + (q'a - 3 )6pa - _a 561a] dr
S — Pa qa

4.3.11)

s . s d
;padqa = Zp(155q
dl‘ ZPQ(SCI(I Z (;pa) 0qq

== 4 S padta =Y adta: (43.12)
a=1 a=1

A KT

/ﬁ [dthadqa Zpadqa+2( 0pa) s

a=1 a=1

ERN . OH
/Z[( —R)5Pa—(l?a+@)6qa]dt_o,

(4.3.14)

= ZPQ/&ZQ

XA Ayt s 2 B E 1, BTEA 6qo(t1) = 6qa(t2) = 0, BrPA

5]
[ S [l 2o s 2Joaa-a s
9qa
H 0q o, 0P o 2850 HAERE, FT15
Pa=—F—. (4.3.16)

O
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4.4 JEMIEH
44.1 TENASHRIG A0

€ X 4.3: 1A

W Po M Qo KT 1, Das qo WKL A REHREI— R4 K, {8715 Hamilton 52 E
HAAZE, Bl

Qa = Pa' Ry~ “4.4.1)

2, 5 Qs Pa 32 qas P WIIENZEH (canonical transformation). K 2 iF A8 # )5
#riY Hamiltonian,

A B BRI, IR AR e 25 F

%) S 153 S
5 oo —H|dt =6 P,0,—-K|dr=0, 442
/ﬁ azzlp g ) / (azl 0 (4.4.2)
AN _E— AT R R E U bisia) i S5, |
Z Pada—H = Z Polo-k+%Y (4.4.3)

8 U FRoh e AR B i (generating function) =i 4 ik phi %k (generating function)., B[

dU = 3" padga— ) PadQu+ (K - H)dr. (4.4.4)

4.4.2  PYFIEIAE R

1. Uy =U; (t,q,0), FHe—XGENZE 4 (type 1 canonical transformation).
2. Uy =U;,(t,q,P), FRE__HOEMAEH (type 2 canonical transformation).
3. Us =Us (t,p, Q), Fr-hss = RE N2t (type 3 canonical transformation).
4. Uy = Uy (8, p, P), TR DU ENZE 4 (type 4 canonical transformation).

S —REN 5

U 4, 45 201 do, + a—(ildt. (4.4.5)

du, = o 44
: 0qa * p laQa

a=1

2 U =U, i (4.4.4) fi (4.4.5), a5

U,
a aqg?
oU,
{ Po=- , 4.4.6
90, (4.4.6)
0
K=H+22L




4.4, ENE

5 TR R

> oU
v, = ) =—2d

q
=1 aQa' “

N
é>Uz=U+ZPaQa,mu

dUZ—Zpadqa //P@HK H)dr+;/P@ ZQadPa.
=1

Feeat (4.4.4) A1 (4.4.8), AT15

S RN

aU
dus = > —2d

S
LU =U= > paga W

a=1

S

dU3=Z

[07

i (4.4.4) Al (4.4.11), v]f5

S5 DU 7R A A 4

S

ou
dUy = Z ap% dpe +

a=1 @

_ZS:PQan+(K—H)dt—ZS:
a=1

aUZ (9U2
dP, + —=dr.
LoP, T o1

a=

_oU;
p(l’ - aqq?
oU,
QO! = -5
0P,
K=H+ 6U2
ot

28U3 0o 8U3c1¢.
aQa ot

- Zs: dadpa-

07 a=1

ouU. ouU.
_4dPa'+ —4dt.

apa ot
a=1

31

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

4.4.11)

(4.4.12)

(4.4.13)
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é\U4 =U - ZPQQ(z"‘ZPaQa, iy

a=1 a=1
s s s s s s
dU4:/w_/Z}@+(K_H)dt_Z a'dQQ_ZQdea+ZP an+ZQa’dPa'-
a @ a=1 @ a=1

(4.4.14)
Hoag st (4.4.4) Al (4.4.14), 15

Uy
Q(z - (9pa’
oUy
= 4.4.15
3 Q(l GP(,’ ( )
Uy
K=H+—.
ot

DUZRY TE A f5 1 S

F 4.1 YR TE AR

gl A PR 1E D22 46
F—RK|\U=U(90) | p=9dU/dq, P=-0U/dQ
=X |\ U=U(tq,P)| p=0U/dq, Q=0U/OP
=X\ U=U(t,p, Q)| qg=-0U/dp, P=-0U/dQ
®k | U=U(t,p,P) | q=-0U/dp, Q=0UJ/OP

W: K=H+0U/ot.
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=9l

d’Alembert J5 ¥ (d’Alembert’s principle),
5

Euler 55k pRZCEFE (Euler’s homogeneous
function theorem), 10

Euler-Lagrange /% (Euler-Lagrange
equation), 7

Hamilton 52 # (Hamilton’s principle), 27
Hamilton 5% (Hamilton’s equations), 24
Hamiltonian , 24

Jacobi {E %5, (Jacobi identity), 26

Lagrange-d’Alembert 7
(Lagrange-d’Alembert principle),
5

Lagrangian, 7

Legendre %4 (Legendre transformation),
24

Leibniz #{0] (Leibniz rule), 25

Noether £F (Noether’s theorem), 14
Poisson $55- (Poisson bracket), 24

AAEPE: (invariance), 12
V£ & (action), 27
YE & JE 3 (action principles), 27

JUATZy3 (geometric constraint), 2
A5 (covariance), 12

B3 (unilateral constraint), 2
W25 (bilateral constraint), 2

A5 (transformation), 12

nJE& AR (ignorable coordinate), 8
5e#% Z 4t (holonomic system), 2

5% 27 (holonomic constraint), 2
FEFAH (sceleronomous constraint), 1
XTHRAE e (symmetry transformation), 12

35

SRR (symmetry), 12

)7 X 11 (generalized force), 4

I~ X shi (generalized momentum), 7
I~ X AkpR (generalized coordinate), 2
)7 SG#EJE (generalized velocity), 3
W2y (differential constraint), 2

% >17 (central force), 17

ARFrae (effective potential), 18

1E AR #e (canonical transformation), 30
1EN] 57 (canonical equations), 24

PR%Y (generating function), 30

FRAE 256 (ideal constraint), 3

M R PR %R (generating function), 30

H—RE A4 (type 1 canonical
transformation), 30

%H—2% Lagrange J;7 ¢ (Lagrange’s
equation of the first kind), 7

55 =AY IENAE 4 (type 3 canonical
transformation), 30

55— RIE ) AF e (type 2 canonical
transformation), 30

%5 2% Lagrange J#% (Lagrange’s
equation of the second kind), 7

55U 7 IE A5 3 (type 4 canonical
transformation), 30

24k i & (reduced mass), 18

295 (constraint), 1

i #% (virtual displacement), 3

FEZh (virtual work), 3

[T JEH (principle of virtual work), 3
13140 (constant of motion), 8
a5 (kinematic constraint), 2

k523 £ 4t (nonholonomic system), 2
JE52 #2538 (nonholonomic constraint), 2
JEEH LW (rtheonomous constraint), 1
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