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Chapter 1

Lagrange力学

1.1 约束与广义坐标

1.1.1 约束的分类

在运动学中,限制条件称为约束 (constraint)。
假如研究的物体对象由 𝑛 个质点组成, 那么在三维空间中, 取第 𝑖 个质点的位矢 r𝑖, 𝑖 =

1, 2, . . . , 𝑛,其正交分量为 𝑥𝑖, 𝑦𝑖, 𝑧𝑖。
如果约束方程不显含时间,即

𝑓 = 𝑓 (r1, . . . , r𝑛), (1.1.1)

则称其为定常约束 (sceleronomous constraint)或稳定约束；如果约束方程显含时间,即

𝑓 = 𝑓 (𝑡, r1, . . . , r𝑛), (1.1.2)

则称其为非定常约束 (rheonomous constraint)或非稳定约束。
通俗的来讲,定常约束不显含时间,即 𝜕 𝑓 /𝜕𝑡 = 0,也就意味着约束方程不随时间变化,是稳

定的。而非定常约束则相反,它是关于时间 𝑡 的函数,即 𝜕 𝑓 /𝜕𝑡 ≠ 0,意味着它可能会变化,是非
稳定的。
接下来看看两个例子。如图 1.1 所示, 长为 𝑙, 一端固定在 𝑂 点的刚性杆, 因为它是刚性的,

不可缩短,故其另一端点 (𝑥, 𝑦, 𝑧) 有约束 𝑥2 + 𝑦2 + 𝑧2 = 𝑙2。

图 1.1: 一端固定在 𝑂 点的刚性杆

再如图 1.2 所示, 长为 𝑙, 一端固定在 𝑂 点的不可伸长轻绳, 因其可以缩短, 故其另一端点
(𝑥, 𝑦, 𝑧) 有约束 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑙2。

图 1.2: 一端固定在 O点的轻绳
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2 CHAPTER 1. LAGRANGE力学

这两种情况就分别对应以下两种约束。

𝑓 (𝑡, r1, . . . , r𝑛, ¤r1, . . . , ¤r𝑛) = 0 (1.1.3)

称为双侧约束 (bilateral constraint),等号限制住了系统,是不可脱离的约束。而

𝑓 (𝑡, r1, . . . , r𝑛, ¤r1, . . . , ¤r𝑛) ≥ 0 (1.1.4)

称为单侧约束 (unilateral constraint),可以在某方面脱离约束。若单侧约束的形式为 𝑓 ≤ 0,则
可以通过原约束两侧同乘以 −1转化。

将

𝑓 (𝑡, r1, . . . , r𝑛) = 0 (1.1.5)

称为几何约束 (geometric constraint),将

𝑓 (𝑡, r1, . . . , r𝑛, ¤r1, . . . , ¤r𝑛) = 0 (1.1.6)

称为微分约束 (differential constraint)或运动约束 (kinematic constraint)。

几何约束不显含速度,而微分约束显含速度。将几何约束 𝑓 (𝑡, r𝑖) = 0两侧对时间 𝑡 求导,得

d 𝑓
d𝑡

=
𝜕 𝑓

𝜕𝑡
+

𝑛∑
𝑖=1

(
𝜕 𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝜕 𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 𝜕 𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑡

)
=
𝜕 𝑓

𝜕𝑡
+

𝑛∑
𝑖=1

(
𝜕 𝑓

𝜕𝑥
¤𝑥 + 𝜕 𝑓

𝜕𝑦
¤𝑦 + 𝜕 𝑓

𝜕𝑧
¤𝑧
)
= 0, (1.1.7)

经过求导后得到的式子显含速度, 于是几何约束就变为微分约束, 也就是说只要限制住了位置,
也就必然限制住了速度。于是,微分约束就可以分成两类：完整约束 (holonomic constraint)和
非完整约束 (nonholonomic constraint)。完整约束即可对时间积分的微分约束,又称几何约束；
非完整约束即不可对时间积分的微分约束。

仅有完整约束的力学体系称为完整系统 (holonomic system), 其余力学体系都称为非完整
系统 (nonholonomic system)。

1.1.2 广义坐标

能够唯一确定系统位形的独立坐标,称为广义坐标 (generalized coordinate)。广义坐标的
量纲不一定是长度, 也可以是角度、质量、时间的量纲等。广义坐标的个数等于系统的自由度,
记为 𝑠。对于 𝑛 个质点组成的系统,其自由度为 3𝑛,但是由于约束的存在,系统的自由度会减少,
即 𝑠 = 3𝑛 −完整约束的个数 < 3𝑛。

如图 1.3所示, 摆长为 𝑙 的单摆中, 𝜃 就是广义坐标, 而也可以取 𝑥 为广义坐标, 因为它们在
这个体系中的值是唯一的。但是, (𝑥, 𝑦) 和 𝑦 都不是广义坐标,因为存在单摆摆到同一高度 𝑦 的
情况。
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图 1.3: 单摆

Lagrange1首先用符号 𝑞𝛼 表示第 𝛼 个广义坐标, 其中 𝛼 = 1, 2, . . . , 𝑠。广义坐标对时间求
导,即得到 ¤𝑞𝛼,称为广义速度 (generalized velocity)。

1.2 虚功原理

1.2.1 基本形式的虚功原理

我们知道, 对于 𝑡 时刻的坐标矢量 r𝑖, 其经过 𝑡 时间, 有位移 dr𝑖, 即在 𝑡 + d𝑡 时刻的坐
标矢量为 r𝑖 + dr𝑖。若假定时间不变, 即 𝛿𝑡 = 0, 则有约束允许的位移 𝛿r𝑖, 称虚位移 (virtual
displacement)。对于定常约束 (𝜕 𝑓 /𝜕𝑡 = 0), 也就是说, 在时不变 (等时)的情况下, 变分算符 𝛿
和微分算符 d是等价的,因此,可以将虚位移 𝛿r𝑖 看做是实位移 dr𝑖 的特例。而对于非定常约束,
实位移和虚位移是不同的。
模仿 Newton力学的功的定义,有虚功 (virtual work)

𝛿𝑊 =
𝑛∑
𝑖=1

(F𝑖 + R𝑖) · 𝛿r𝑖, (1.2.1)

其中 F𝑖 是主动力, R𝑖 是约束力。满足

𝑛∑
𝑖=1

R𝑖 · 𝛿r𝑖 = 0 (1.2.2)

的约束称为理想约束 (ideal constraint),即约束力对虚位移所作的功为零。
进而,满足理想约束下的虚功为

𝛿𝑊 =
𝑛∑
𝑖=1

F𝑖 · 𝛿r𝑖 . (1.2.3)

令 𝛿𝑊 = 0,即得到虚功原理 (principle of virtual work)

𝛿𝑊 =
𝑛∑
𝑖=1

F𝑖 · 𝛿r𝑖 = 0. (1.2.4)

1拉格朗日, Joseph-Louis Lagrange, 原名 Giuseppe Luigi Lagrangia, 1736.01.25—1813.04.10, 意大利数学家、
物理学家和天文学家,后归化为法国人。
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命题 1.1
系统在约束允许的平衡位形下维持平衡的充要条件是

𝑛∑
𝑖=1

F𝑖 · 𝛿r𝑖 = 0. (1.2.5)

1.2.2 广义坐标下的虚功原理

从基本形式的虚功原理出发, 可以推导出广义坐标下的虚功原理。知道 r𝑖 = r𝑖 (𝑡, 𝑞), 求微
分得

dr𝑖 =
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

d𝑞𝛼 + 𝜕r𝑖
𝜕𝑡

d𝑡. (1.2.6)

将微分改为变分,时刻牢记 𝛿𝑡 = 0,即得到虚位移

𝛿r𝑖 =
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

𝛿𝑞𝛼 +
�
�
��𝜕r𝑖

𝜕𝑡
𝛿𝑡 =

𝑠∑
𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

𝛿𝑞𝛼. (1.2.7)

代入式 (1.2.4)中,得广义坐标下的虚功

𝛿𝑊 =
𝑛∑
𝑖=1

F𝑖 ·
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

𝛿𝑞𝛼 =
𝑠∑

𝛼=1

(
𝑛∑
𝑖=1

F𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

)
𝛿𝑞𝛼. (1.2.8)

再令 𝛿𝑞𝛼 = 0,即得到广义坐标下的虚功原理

𝑛∑
𝑖=1

F𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

= 0 . (1.2.9)

若广义坐标有位移的量纲, 那么上式就有力的量纲, 将其称为广义力 (generalized force), 记为
𝑄𝛼,即

𝑄𝛼 =
𝑛∑
𝑖=1

F𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

. (1.2.10)

注意,如果广义坐标有角度的量纲,那么广义力就有力矩的量纲；广义坐标有体积的量纲,那么广
义力就有压强的量纲。如此看来,广义力并不是真正的力,而是一种推广的概念。

1.2.3 保守系统下的虚功原理

记势能为 𝑉 ,对于保守系统,有

F𝑖 = −∇𝑖𝑉 = −
(
𝜕𝑉

𝜕𝑥𝑖
i + 𝜕𝑉

𝜕𝑦𝑖
j + 𝜕𝑉

𝜕𝑧𝑖
k
)
, (1.2.11)

将式 (1.2.11)和 r𝑖 = 𝑥𝑖i + 𝑦𝑖j + 𝑧𝑖k代入式 (1.2.10)中,得

𝑄𝛼 =
𝑛∑
𝑖=1

−
(
𝜕𝑉

𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑞𝛼

+ 𝜕𝑉

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕𝑞𝛼

+ 𝜕𝑉

𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝑞𝛼

)
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= − 𝜕𝑉

𝜕𝑞𝛼
= 0, (1.2.12)

即得到保守系统下的平衡条件

𝜕𝑉

𝜕𝑞𝛼
= 0 . (1.2.13)

1.3 Euler-Lagrange方程
1.3.1 d’Alembert原理
在 Newton力学中,对于保守系统,其运动方程为

F𝑖 + R𝑖 = 𝑚𝑖¥r𝑖, 𝑖 = 1, 2, . . . , 𝑛 (1.3.1)

其中 F𝑖 称为主动力, R𝑖 称为约束力 (受外界约束的被动力)。不妨将 𝑚𝑖¥r𝑖 移到等号左侧,即将其
看做一项力,得

F𝑖 + R𝑖 − 𝑚𝑖¥r𝑖 = 0, (1.3.2)

其中 −𝑚𝑖¥r𝑖 称为 d’Alembert 惯性力, 或反向有效力。这就是 d’Alembert 原理 (d’Alembert’s
principle), 或称 Lagrange-d’Alembert 原理 (Lagrange-d’Alembert principle)。这时候, 动
力学问题就成为了主动力、约束力和反向有效力共同作用下的平衡问题。
模仿式 (1.2.8)的推导过程,忽略约束力,得

0 =
𝑛∑
𝑖=1

(F𝑖 − 𝑚𝑖¥r𝑖) ·
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

𝛿𝑞𝛼

=
𝑠∑

𝛼=1

[
𝑛∑
𝑖=1

(F𝑖 − 𝑚𝑖¥r𝑖) ·
𝜕r𝑖
𝜕𝑞𝛼

]
𝛿𝑞𝛼

=
𝑠∑

𝛼=1

(
𝑛∑
𝑖=1

F𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

−
𝑛∑
𝑖=1

𝑚𝑖¥r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

)
𝛿𝑞𝛼

=
𝑠∑

𝛼=1

(
𝑄𝛼 −

𝑛∑
𝑖=1

𝑚𝑖¥r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

)
𝛿𝑞𝛼. (1.3.3)

就得到一个新的动力学方程

𝑄𝛼 −
𝑛∑
𝑖=1

𝑚𝑖¥r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

= 0, 𝛼 = 1, 2, . . . , 𝑠. (1.3.4)

在下一小节会接着研究这个方程。

1.3.2 第一类 Lagrange方程
先证明两个公式。

性质 1.1
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d
d𝑡

(
𝜕r𝑖
𝜕𝑞𝛼

)
=
𝜕 ¤r𝑖
𝜕𝑞𝛼

. (1.3.5)

证明. r𝑖 对时间求导,有

¤r𝑖 =
𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼, (1.3.6)

可以看出 ¤r𝑖 = ¤r𝑖 (𝑡, 𝑞1, . . . , 𝑞𝑠, ¤𝑞1, . . . , ¤𝑞𝑠),在后文把 𝑞1, . . . , 𝑞𝑠, ¤𝑞1, . . . , ¤𝑞𝑠 分别记为 𝑞, ¤𝑞。
将 𝜕r𝑖/𝜕𝑞𝛼 对时间求导,得

d
d𝑡

(
𝜕r𝑖
𝜕𝑞𝛼

)
=
𝜕

𝜕𝑡

(
𝜕r𝑖
𝜕𝑞𝛼

)
+

𝑠∑
𝛽=1

𝜕

𝜕𝑞𝛽

(
𝜕r𝑖
𝜕𝑞𝛼

)
¤𝑞𝛽

=
𝜕

𝜕𝑞𝛼

(
𝜕r𝑖
𝜕𝑡

)
+ 𝜕

𝜕𝑞𝛼

𝑠∑
𝛽=1

(
𝜕r𝑖
𝜕𝑞𝛽

)
¤𝑞𝛽

=
𝜕

𝜕𝑞𝛼

©­«𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛽=1

𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛽ª®¬︸                   ︷︷                   ︸
¤r𝑖

=
𝜕 ¤r𝑖
𝜕𝑞𝛼

. (1.3.7)

□

性质 1.2

𝜕 ¤r𝑖
𝜕 ¤𝑞𝛼

=
𝜕r𝑖
𝜕𝑞𝛼

. (1.3.8)

证明.

𝜕 ¤r𝑖
𝜕 ¤𝑞𝛼

=
𝜕

𝜕 ¤𝑞𝛼
©­«𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛽=1

𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛽ª®¬
=

�
�
�
��𝜕

𝜕 ¤𝑞𝛼
𝜕r𝑖
𝜕𝑡

+ 𝜕

𝜕 ¤𝑞𝛼
©­«

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛽ª®¬
=

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛽

𝜕 ¤𝑞𝛽
𝜕 ¤𝑞𝛼

=
𝑠∑

𝛽=1

𝜕r𝑖
𝜕𝑞𝛽

𝛿𝛽𝛼

=
𝜕r𝑖
𝜕𝑞𝛼

. (1.3.9)

□
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因为

d
d𝑡

(
𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

)
=

𝑛∑
𝑖=1

𝑚𝑖¥r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

+
𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
d
d𝑡

(
𝜕r𝑖
𝜕𝑞𝛼

)
, (1.3.10)

所以,式 (1.3.4)可以写成

𝑄𝛼 − d
d𝑡

(
𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
𝜕r𝑖
𝜕𝑞𝛼

)
+

𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
d
d𝑡

(
𝜕r𝑖
𝜕𝑞𝛼

)
= 0, (1.3.11)

再代入式 (1.3.5)和 (1.3.8),得

𝑄𝛼 − d
d𝑡

(
𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
𝜕 ¤r𝑖
𝜕 ¤𝑞𝛼

)
+

𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 ·
𝜕 ¤r𝑖
𝜕𝑞𝛼

= 0. (1.3.12)

还知道动能

𝑇 =
1
2

𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 · ¤r𝑖, (1.3.13)

则可进一步得到

𝑄𝛼 − d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)
+ 𝜕𝑇

𝜕𝑞𝛼
= 0 , (1.3.14)

这就是基本形式的 Lagrange 方程, 叫做第一类 Lagrange 方程 (Lagrange’s equation of the
first kind)。其中 𝜕𝑇/𝜕 ¤𝑞𝛼 叫做广义动量 (generalized momentum)。

1.3.3 Euler-Lagrange方程
若主动力是保守力,即 𝑄𝛼 = −𝜕𝑉/𝜕𝑞𝛼,则根据式 (1.3.14),有

d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)
− 𝜕𝑇

𝜕𝑞𝛼
+ 𝜕𝑉

𝜕𝑞𝛼
= 0 (1.3.15)

⇐⇒ d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)
− 𝜕 (𝑇 −𝑉)

𝜕𝑞𝛼
= 0. (1.3.16)

又因为势能 𝑉 = 𝑉 (𝑡, 𝑞),不显含广义速度,所以 𝜕𝑉/𝜕 ¤𝑞𝛼 = 0,于是

d
d𝑡

[
𝜕 (𝑇 −𝑉)
𝜕 ¤𝑞𝛼

]
− 𝜕 (𝑇 −𝑉)

𝜕𝑞𝛼
= 0. (1.3.17)

记 𝐿 = 𝑇 −𝑉 ,则有

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
− 𝜕𝐿

𝜕𝑞𝛼
= 0 , (1.3.18)

其中 𝐿 叫做 Lagrangian。这就是第二类 Lagrange方程 (Lagrange’s equation of the second
kind),也叫Euler-Lagrange方程 (Euler-Lagrange equation),现在得到了保守系的Lagrange
方程。
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可以与 Newton力学进行对比,式 (1.3.18)的物理意义一目了然。

1.3.4 可略坐标与运动常数

若 Lagrangian 𝐿不显含某一广义坐标 𝑞𝛼,即 𝜕𝐿/𝜕𝑞𝛼 = 0,则称 𝑞𝛼为可略坐标 (ignorable
coordinate)2。由式 (1.3.18),可得

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
= 0, (1.3.19)

对时间积分后,得守恒的广义动量

𝑝𝛼 =
𝜕𝐿

𝜕 ¤𝑞𝛼
= 常数, (1.3.20)

这称为运动常数 (constant of motion)。只要是系统的运动的守恒量,都可以称为运动常数。

1.3.5 广义能量

由式 (1.3.14),可得

d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)
− 𝜕𝑇

𝜕𝑞𝛼
= − 𝜕𝑉

𝜕𝑞𝛼
, (1.3.21)

对每一项乘上广义速度 ¤𝑞𝛼 并求和,得
𝑠∑

𝛼=1

[
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)]
¤𝑞𝛼 −

𝑠∑
𝛼=1

𝜕𝑇

𝜕𝑞𝛼
¤𝑞𝛼 = −

𝑠∑
𝛼=1

𝜕𝑉

𝜕𝑞𝛼
¤𝑞𝛼, (1.3.22)

又因为

𝑠∑
𝛼=1

[
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼

)]
=

𝑠∑
𝛼=1

d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼

)
¤𝑞𝛼 +

𝑠∑
𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¥𝑞𝛼, (1.3.23)

代入式 (1.3.22)中,有
𝑠∑

𝛼=1

[
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼

)]
−

𝑠∑
𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¥𝑞𝛼 −

𝑠∑
𝛼=1

𝜕𝑇

𝜕𝑞𝛼
¤𝑞𝛼 = −

𝑠∑
𝛼=1

𝜕𝑉

𝜕𝑞𝛼
¤𝑞𝛼. (1.3.24)

现在来看动能 𝑇 = 𝑇 (𝑡, 𝑞, ¤𝑞) 对时间的导数

d𝑇
d𝑡

=
𝜕𝑇

𝜕𝑡
+

𝑠∑
𝛼=1

𝜕𝑇

𝜕𝑞𝛼
¤𝑞𝛼 +

𝑠∑
𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¥𝑞𝛼, (1.3.25)

和势能 𝑉 = 𝑉 (𝑡, 𝑞) 对时间的导数

d𝑉
d𝑡

=
𝜕𝑉

𝜕𝑡
+

𝑠∑
𝛼=1

𝜕𝑉

𝜕𝑞𝛼
¤𝑞𝛼, (1.3.26)

2有些地方称为可遗坐标或循环坐标,我认为是不恰当的。
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联立式 (1.3.24)—(1.3.26),得
𝑠∑

𝛼=1

(
d
d𝑡
𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼

)
− d𝑇

d𝑡
+ 𝜕𝑇

𝜕𝑡
= −d𝑉

d𝑡
+ 𝜕𝑉

𝜕𝑡
, (1.3.27)

即

d
d𝑡

(
𝑠∑

𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼 − 𝑇 +𝑉

)
=
𝜕 (𝑉 − 𝑇)

𝜕𝑡
= −𝜕𝐿

𝜕𝑡
, (1.3.28)

又 𝑉 不显含 ¤𝑞𝛼,广义动量 𝑝𝛼 =
𝜕𝐿

𝜕 ¤𝑞𝛼
=
𝜕𝑇

𝜕 ¤𝑞𝛼
,所以

d
d𝑡

(
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐿

)
= −𝜕𝐿

𝜕𝑡
. (1.3.29)

定义广义能量

𝐻 =
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐿 , (1.3.30)

则

d𝐻
d𝑡

= −𝜕𝐿
𝜕𝑡
. (1.3.31)

若 𝐿 不显含时间 𝑡,即
𝜕𝐿

𝜕𝑡
= 0,则

d𝐻
d𝑡

= 0, (1.3.32)

此时 𝐻 为常数。
如果 r𝑖 = r𝑖 (𝑡, 𝑞) 显含时间,有动能

𝑇 =
1
2

𝑛∑
𝑖=1

𝑚𝑖 ¤r𝑖 · ¤r𝑖 =
1
2

𝑛∑
𝑖=1

𝑚𝑖

(
𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼

)
·
(
𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼

)
=

1
2

𝑛∑
𝑖=1

𝑚𝑖
©­«𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼 · 𝜕r𝑖
𝜕𝑡

+
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼 +
𝑠∑

𝛼=1

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼 · 𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛽ª®¬
=

1
2

𝑛∑
𝑖=1

𝑚𝑖
©­«𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑡

+ 2
𝑠∑

𝛼=1

𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼 +
𝑠∑

𝛼=1

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛼

· 𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛼 ¤𝑞𝛽ª®¬
=

1
2

𝑛∑
𝑖=1

𝑚𝑖
𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑡

+ 𝑚𝑖

𝑠∑
𝛼=1

𝜕r𝑖
𝜕𝑡

· 𝜕r𝑖
𝜕𝑞𝛼

¤𝑞𝛼 + 1
2
𝑚𝑖

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛼

· 𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛼 ¤𝑞𝛽 . (1.3.33)

上式分别为广义动能的零次、一次和二次项,记为 𝑇0, 𝑇1, 𝑇2,则有 𝑇 = 𝑇0 + 𝑇1 + 𝑇2。𝑇0 和 𝑇1 是
由非定常约束带来的。
引入一个定理。
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引理 1.1 Euler 齐次函数定理
设 𝑓 (𝑥1, . . . , 𝑥𝑛) 是 𝑛个变量的 𝑚 次齐次函数,即

𝑓 (𝜆𝑥1, . . . , 𝜆𝑥𝑛) = 𝜆𝑚 𝑓 (𝑥1, . . . , 𝑥𝑛) , (1.3.34)

则有

𝑛∑
𝑖=1

𝑥𝑖
𝜕 𝑓

𝜕𝑥𝑖
= 𝑚 𝑓 . (1.3.35)

这就是 Euler齐次函数定理 (Euler’s homogeneous function theorem)。

根据 Euler齐次函数定理,有
𝑠∑

𝛼=1

𝜕𝑇𝑛
𝜕 ¤𝑞𝛼

¤𝑞𝛼 = 𝑛𝑇𝑛, (1.3.36)

由此可得

𝑠∑
𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼 =

𝑠∑
𝛼=1

𝜕 (𝑇0 + 𝑇1 + 𝑇2)
𝜕 ¤𝑞𝛼

¤𝑞𝛼 = 0𝑇0 + 1𝑇1 + 2𝑇2 = 𝑇1 + 2𝑇2. (1.3.37)

所以

𝐻 =
𝑠∑

𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼 − 𝑇 +𝑉 = (𝑇1 + 2𝑇2) − (𝑇0 + 𝑇1 + 𝑇2) +𝑉

= 𝑇2 − 𝑇0 +𝑉. (1.3.38)

如果 r𝑖 = r𝑖 (𝑞) 不显含时间,那么式 (1.3.33)只剩下二次项,变为

𝑇 =
1
2

𝑛∑
𝑖=1

𝑚𝑖

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛼

· 𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛼 ¤𝑞𝛽, (1.3.39)

由 Euler齐次函数定理,可得
𝑠∑

𝛼=1

𝜕𝑇

𝜕 ¤𝑞𝛼
¤𝑞𝛼 = 2𝑇, (1.3.40)

所以

𝐻 = 2𝑇 − 𝑇 +𝑉 = 𝑇 +𝑉. (1.3.41)

当坐标不显含时间时,广义能量 𝐻 就是系统的机械能。

1.3.6 Euler-Lagrange方程的应用

可以运用 Euler-Lagrange方程求球坐标系下的加速度分量。在球坐标系下,有 d𝑟 = d𝑟e𝑟 +
𝑟 d𝜃e𝜃 + 𝑟 sin 𝜃 d𝜙e𝜙,则 v = d𝑟/d𝑡 = ¤𝑟e𝑟 + 𝑟 ¤𝜃e𝜃 + 𝑟 sin 𝜃 ¤𝜙e𝜙。取三个广义坐标 𝑞𝑟 = 𝑟, 𝑞 𝜃 =
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𝜃, 𝑞𝜙 = 𝜙,由式 (1.3.14),可得

𝛿𝑊 = F · 𝛿r
=

(
𝐹𝑟e𝑟 + 𝐹𝜃e𝜃 + 𝐹𝜙e𝜙

)
·
(
𝛿𝑟e𝑟 + 𝑟𝛿𝜃e𝜃 + 𝑟 sin 𝜃𝛿𝜙e𝜙

)
= 𝐹𝑟𝛿𝑟 + 𝐹𝜃𝑟𝛿𝜃 + 𝐹𝜙𝑟 sin 𝜃𝛿𝜙
= 𝑄𝑟𝛿𝑞𝑟 +𝑄 𝜃𝛿𝑞𝜃 +𝑄𝜙𝛿𝑞𝜙 . (1.3.42)

即得广义力、力与加速度的关系
𝑄𝑟 = 𝐹𝑟 = 𝑚𝑎𝑟 ,

𝑄 𝜃 = 𝐹𝜃𝑟 = 𝑚𝑎𝜃𝑟,

𝑄𝜙 = 𝐹𝜙𝑟 sin 𝜃 = 𝑚𝑎𝜙𝑟 sin 𝜃.

(1.3.43)

又因为动能

𝑇 =
1
2
𝑚

(
¤𝑟2 + 𝑟2 ¤𝜃2 + 𝑟2 sin2 𝜃 ¤𝜙2

)
, (1.3.44)

分别代入式 (1.3.14)中,可求得各广义力

𝑄𝑟 =
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝑟

)
− 𝜕𝑇

𝜕𝑟

= 𝑚
d
d𝑡

( ¤𝑟) − 𝑚

2
𝜕

𝜕𝑟

(
𝑟2 ¤𝜃2 + 𝑟2 sin2 𝜃 ¤𝜙2

)
= 𝑚

(
¥𝑟 − 𝑟 ¤𝜃2 − 𝑟 sin2 𝜃 ¤𝜙2

)
, (1.3.45)

𝑄 𝜃 =
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝜃

)
− 𝜕𝑇

𝜕𝜃

= 𝑚
d
d𝑡

(
𝑟2 ¤𝜃

)
− 𝑚

2
𝜕

𝜕𝜃

(
𝑟2 sin2 𝜃 ¤𝜙2

)
= 𝑚𝑟

(
2 ¤𝑟 ¤𝜃 + 𝑟 ¥𝜃 − 𝑟 sin 𝜃 cos 𝜃 ¤𝜙2

)
, (1.3.46)

𝑄𝜙 =
d
d𝑡

(
𝜕𝑇

𝜕 ¤𝜙

)
− 𝜕𝑇

𝜕𝜙

= 𝑚
d
d𝑡

(
𝑟2 sin2 𝜃 ¤𝜙

)
− 0

= 𝑚𝑟 sin 𝜃
(
2 ¤𝑟 sin 𝜃 ¤𝜙 + 2𝑟 cos 𝜃 ¤𝜃 ¤𝜙 + 𝑟 sin 𝜃 ¥𝜙

)
. (1.3.47)

得到各加速度分量 
𝑎𝑟 = ¥𝑟 − 𝑟 ¤𝜃2 − 𝑟 sin2 𝜃 ¤𝜙2,

𝑎𝜃 = ¥𝜃 + 2 ¤𝑟 ¤𝜃 − 𝑟 sin 𝜃 cos 𝜃 ¤𝜙2,

𝑎𝜙 = 2 ¤𝑟 sin 𝜃 ¤𝜙 + 2𝑟 cos 𝜃 ¤𝜃 ¤𝜙 + 𝑟 sin 𝜃 ¥𝜙.
(1.3.48)
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1.4 对称性

当 Lagrangian 具有某些特殊形式时, 会导致广义动量、能量的守恒, 这其实反映了系统的
对称性 (symmetry),即在某种变换 (transformation)下,系统的性质保持不变性 (invariance)。
这种变换称为对称变换 (symmetry transformation)。

1.4.1 Noether定理
设 Lagrangian 𝐿 (𝑡, 𝑞, ¤𝑞) 描述一封闭系统,设无穷小变换

𝑡 → 𝑡 = 𝑡 +
𝑟∑
𝑖=1

𝜖𝑖𝜉𝑖 (t, 𝑞(𝑡)) , (1.4.1)

𝑞𝛼 → 𝑞𝛼 = 𝑞𝛼 +
𝑟∑
𝑖=1

𝜖𝑖𝜂𝛼𝑖 (t, 𝑞(𝑡)) , (1.4.2)

其中 𝜖𝑖 是无穷小参数, 𝜉𝑖, 𝜂𝛼𝑖 是无穷小函数。当 𝜖𝑖 = 0 时, 𝑡 = 𝑡, 𝑞𝛼 = 𝑞𝛼, 即无穷小变换退化
为恒等变换。设变换后的 Lagrangian为 𝐿

(
𝑡, 𝑞, ¤𝑞

)
,则有不变的作用量

𝑆 =
∫ 𝑡2

𝑡1

𝐿 (𝑡, 𝑞, ¤𝑞) d𝑡 =
∫ 𝑡2

𝑡1

𝐿
(
𝑡, 𝑞, ¤𝑞

)
d𝑡 = 𝑆, (1.4.3)

又 ∫ 𝑡2

𝑡1

𝐿
(
𝑡, 𝑞, ¤𝑞

)
d𝑡 =

∫ 𝑡2

𝑡1

𝐿
(
𝑡, 𝑞, ¤𝑞

) d𝑡
d𝑡

d𝑡, (1.4.4)

所以

𝐿
(
𝑡, 𝑞, ¤𝑞

) d𝑡
d𝑡

= 𝐿 (𝑡, 𝑞, ¤𝑞). (1.4.5)

如果

𝐿 (𝑡, 𝑞, ¤𝑞) = 𝐿 (𝑡, 𝑞, ¤𝑞), (1.4.6)

则称 𝐿 在变换下具有不变性 (invariance)。如果

𝐿 (𝑡, 𝑞, ¤𝑞) = 𝐿 (𝑡, 𝑞, ¤𝑞) + dΛ(𝑡, 𝑞)
d𝑡

, (1.4.7)

则称 𝐿 在变换下具有协变性 (covariance)。具有这两种性质的变换称为对称变换 (symmetry
transformation)。
将式 (1.4.7)代入式 (1.4.5),得[

𝐿
(
𝑡, 𝑞, ¤𝑞

)
+

dΛ
(
𝑡, 𝑞

)
d𝑡

]
d𝑡
d𝑡

= 𝐿 (𝑡, 𝑞, ¤𝑞). (1.4.8)

保留一阶小量,由式 (1.4.1)可得

d𝑡
d𝑡

= 1 +
𝑟∑
𝑖=1

𝜖𝑖
d𝜉𝑖
d𝑡
, (1.4.9)
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¤𝑞𝛼 =
d𝑞𝛼
d𝑡

=
d𝑞𝛼
d𝑡

d𝑡
d𝑡

=

[
¤𝑞𝛼 +

𝑟∑
𝑖=1

𝜖𝑖
d𝜂𝛼𝑖
d𝑡

] (
1 +

𝑟∑
𝑖=1

𝜖𝑖
d𝜉𝑖
d𝑡

)−1

≈
[
¤𝑞𝛼 +

𝑟∑
𝑖=1

𝜖𝑖
d𝜂𝛼𝑖
d𝑡

] (
1 −

𝑟∑
𝑖=1

𝜖𝑖
d𝜉𝑖
d𝑡

)
≈ ¤𝑞𝛼 +

𝑟∑
𝑖=1

𝜖𝑖

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

)
. (1.4.10)

有

𝐿
(
𝑡, 𝑞, ¤𝑞

)
= 𝐿 (𝑡, 𝑞, ¤𝑞) + 𝜕𝐿

𝜕𝑡

(
𝑡 − 𝑡

)
+

𝑠∑
𝛼=1

[
𝜕𝐿

𝜕𝑞𝛼

(
𝑞𝛼 − 𝑞𝛼

)
+ 𝜕𝐿

𝜕 ¤𝑞𝛼

(
¤𝑞𝛼 − ¤𝑞𝛼

)]
= 𝐿 (𝑡, 𝑞, ¤𝑞) + 𝜕𝐿

𝜕𝑡

𝑟∑
𝑖=1

𝜖𝑖𝜉𝑖 +
𝑠∑

𝛼=1

𝑟∑
𝑖=1

𝜖𝑖

[
𝜕𝐿

𝜕𝑞𝛼
𝜂𝛼𝑖 +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

)]
,

(1.4.11)

dΛ
(
𝑡, 𝑞

)
d𝑡

=
dΛ

(
𝑡, 𝑞

)
d𝑡

d𝑡
d𝑡

≈ d
d𝑡

[
𝜕Λ
𝜕𝑡

(
𝑡 − 𝑡

)
+

𝑠∑
𝛼=1

𝜕Λ
𝜕𝑞𝛼

(
𝑞𝛼 − 𝑞𝛼

) ] (
1 −

𝑟∑
𝑖=1

𝜖𝑖
d𝜉𝑖
d𝑡

)
≈ d

d𝑡

𝑟∑
𝑖=1

𝜖𝑖

[
𝜕Λ
𝜕𝑡
𝜉𝑖 +

𝑠∑
𝛼=1

𝜕Λ
𝜕𝑞𝛼

𝜂𝛼𝑖

]
=

d
d𝑡

𝑟∑
𝑖=1

𝜖𝑖Π𝑖 (𝑡, 𝑞), (1.4.12)

其中 Π𝑖 (𝑡, 𝑞) =
𝜕Λ
𝜕𝑡
𝜉𝑖 +

𝑠∑
𝛼=1

𝜕Λ
𝜕𝑞𝛼

𝜂𝛼𝑖。把上两式代入式 (1.4.8)中,得

𝐿 (𝑡, 𝑞, ¤𝑞)+𝜕𝐿
𝜕𝑡

𝑟∑
𝑖=1

𝜖𝑖𝜉𝑖 +
𝑠∑

𝛼=1

𝑟∑
𝑖=1

𝜖𝑖

[
𝜕𝐿

𝜕𝑞𝛼
𝜂𝛼𝑖 +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

)]
+ d

d𝑡

𝑟∑
𝑖=1

𝜖𝑖Π𝑖 (𝑡, 𝑞) =
(
1 −

𝑟∑
𝑖=1

𝜖𝑖
d𝜉𝑖
d𝑡

)
𝐿 (𝑡, 𝑞, ¤𝑞), (1.4.13)

整理得

𝜕𝐿

𝜕𝑡
𝜉𝑖 +

𝑠∑
𝛼=1

[
𝜕𝐿

𝜕𝑞𝛼
𝜂𝛼𝑖 +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

)]
+ 𝐿d𝜉𝑖

d𝑡
= −dΠ𝑖

d𝑡
, (1.4.14)

对于给定的 𝐿 和变换, 计算上式等号左边的表达式, 若可以表示为某一函数对时间的全微分, 则
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变换是对称变换,同时能够得到 Π𝑖 (𝑡, 𝑞) 的表达式。又

d
d𝑡
𝐿 (𝑡, 𝑞, ¤𝑞) = 𝜕𝐿

𝜕𝑡
+

𝑠∑
𝛼=1

(
𝜕𝐿

𝜕𝑞𝛼
¤𝑞𝛼 + 𝜕𝐿

𝜕 ¤𝑞𝛼
¥𝑞𝛼

)
, (1.4.15)

d
d𝑡

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) =

𝑠∑
𝛼=1

[(
d
d𝑡
𝜕𝐿

𝜕 ¤𝑞𝛼

)
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¥𝑞𝛼𝜉𝑖 − ¤𝑞𝛼
d𝜉𝑖
d𝑡

)]
,

(1.4.16)

代入式 (1.4.14)中,消去 𝜕𝐿/𝜕𝑡,得

d𝐿
d𝑡
𝜉𝑖 −

𝑠∑
𝛼=1

(
𝜕𝐿

𝜕𝑞𝛼
¤𝑞𝛼𝜉𝑖 +

𝜕𝐿

𝜕 ¤𝑞𝛼
¥𝑞𝛼𝜉𝑖

)
+

𝑠∑
𝛼=1

[
𝜕𝐿

𝜕𝑞𝛼
𝜂𝛼𝑖 +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

)]
+ 𝐿d𝜉𝑖

d𝑡
+ dΠ𝑖

d𝑡
= 0

(1.4.17)

⇐⇒ d
d𝑡

(𝐿𝜉𝑖 + Π𝑖) +
𝑠∑

𝛼=1

[
𝜕𝐿

𝜕𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) +

𝜕𝐿

𝜕 ¤𝑞𝛼

(
d𝜂𝛼𝑖
d𝑡

− ¤𝑞𝛼
d𝜉𝑖
d𝑡

− ¥𝑞𝛼𝜉𝑖
)]

= 0

(1.4.18)

⇐⇒ d
d𝑡

[
𝑠∑

𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) + 𝐿𝜉𝑖 + Π𝑖

]
+

𝑠∑
𝛼=1

[
𝜕𝐿

𝜕𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) −

(
d
d𝑡
𝜕𝐿

𝜕 ¤𝑞𝛼

)
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖)

]
= 0

(1.4.19)

⇐⇒ d
d𝑡

[
𝑠∑

𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) + 𝐿𝜉𝑖 + Π𝑖

]
+

𝑠∑
𝛼=1

(
𝜕𝐿

𝜕𝑞𝛼
− d

d𝑡
𝜕𝐿

𝜕 ¤𝑞𝛼

)
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) = 0.

(1.4.20)

当系统运动满足 Euler-Lagrange方程时,由上式知,存在运动常数

𝐼𝑖 (𝑡, 𝑞) =
𝑠∑

𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
(𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) + 𝐿𝜉𝑖 + Π𝑖, (1.4.21)

又

𝜕𝐿

𝜕 ¤𝑞𝛼
=

𝜕

𝜕 ¤𝑞𝛼

(
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐻

)
= 𝑝𝛼, (1.4.22)

所以

𝐼𝑖 (𝑡, 𝑞) =
𝑠∑

𝛼=1
𝑝𝛼 (𝜂𝛼𝑖 − ¤𝑞𝛼𝜉𝑖) +

(
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐻

)
𝜉𝑖 + Π𝑖

=
𝑠∑

𝛼=1
𝜂𝛼𝑖𝑝𝛼 − 𝐻𝜉𝑖 + Π𝑖, (1.4.23)

这就是 Noether定理 (Noether’s theorem)3。

考虑变换形式不变,则有 Λ = 0。如果仅作时间平移变换 𝜂𝛼𝑖 = 0,则有 𝐼𝑖 = −𝐻𝜉𝑖。如果仅

3诺特, Amalie Emmy Noether, 1882.03.23—1935.04.14,德国数学家。
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作空间变换 𝜉𝑖 = 0,则有 𝐼𝑖 =
𝑠∑

𝛼=1
𝜂𝛼𝑖𝑝𝛼。
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Chapter 2

有心力场

2.1 两体问题

2.1.1 两体问题

作用力可以分类为有心力 (central force)与非有心力。有心力的方向永远指向一个固定点,
称为力中心点。万有引力、静电力,都是有心力。

图 2.1: 两体问题

如图 2.1 所示, 两个质点之间的相互作用力是有心力, 力的方向指向另一个质点。设两质点
的质量分别为 𝑚1 和 𝑚2, r′ 为两质点之间的位矢, r1 和 r2 分别为两质点相对于质心的位矢, 则
有

r1 =
𝑚2

𝑚1 + 𝑚2
r, r2 = − 𝑚1

𝑚1 + 𝑚2
r, (2.1.1)

从而

𝑇 =
1
2
𝑚1¤r2

1 +
1
2
𝑚2¤r2

2

=
1
2
𝑚1

(
𝑚2

𝑚1 + 𝑚2

)2
¤r′2 + 1

2
𝑚2

(
− 𝑚1

𝑚1 + 𝑚2

)2
¤r′2

=
1
2
𝑚1𝑚2

𝑚1 + 𝑚2
¤r′2

17
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=
1
2
𝜇 ¤𝑟 ′2, (2.1.2)

其中 𝜇 =
𝑚1𝑚2

𝑚1 + 𝑚2
或

1
𝜇
=

1
𝑚1

+ 1
𝑚2
称为约化质量 (reduced mass)。因此,两体问题可以转化

为一个质点的运动问题。

两质点相对于质心的动能为

𝑇 =
1
2
𝜇 ¤𝑟 ′2, (2.1.3)

记 𝑚c = 𝑚1 + 𝑚2,质心相对于坐标原点的位矢 𝑅 = (𝑥c, 𝑦c, 𝑧c),则有 Lagrangian

𝐿 =
1
2
𝑚c ¤𝑅2 + 1

2
𝜇 ¤𝑟 ′2 −𝑉 (𝑟)

=
1
2
𝑚c

(
¤𝑥2
c + ¤𝑦2

c + ¤𝑧2c
)
+ 1

2
𝜇

(
¤𝑟2 + 𝑟2 ¤𝜙2

)
−𝑉 (𝑟), (2.1.4)

因为 𝐿 不显含时间,故有广义能量

𝐻 =
1
2
𝑚c

(
¤𝑥2
c + ¤𝑦2

c + ¤𝑧2c
)
+ 1

2
𝜇

(
¤𝑟2 + 𝑟2 ¤𝜙2

)
+𝑉 (𝑟) = 𝐸 (2.1.5)

它和机械能相等。因此,有相对运动的机械能

𝐸 ′ =
1
2
𝜇

(
¤𝑟2 + 𝑟2 ¤𝜙2

)
+𝑉 (𝑟). (2.1.6)

由角动量 𝑝𝜙 = 𝜕𝐿/𝜕 ¤𝜙 = 𝜇𝑟2 ¤𝜙守恒,可以记

𝑟2 ¤𝜙 = ℎ, (2.1.7)

则

𝐸 ′ =
1
2
𝜇 ¤𝑟2 + 1

2
𝑝2
𝜙

𝜇𝑟2 +𝑉 (𝑟)

=
1
2
𝜇 ¤𝑟2 + 1

2
𝜇ℎ2

𝑟2 +𝑉 (𝑟)

=
1
2
𝜇 ¤𝑟2 +𝑉eff(𝑟), (2.1.8)

其中𝑉eff(𝑟) =
1
2
𝜇ℎ2

𝑟2 +𝑉 (𝑟)称为有效势能 (effective potential), 1
2
𝜇ℎ2

𝑟2 看做惯性离心力 𝜇𝑟 ¤𝜙2 =

𝜇ℎ2

𝑟3 的势能。

对式 (2.1.4)处理,有 

𝜕𝐿

𝜕 ¤𝑟 = 𝜇 ¤𝑟,
𝜕𝐿

𝜕𝑟
= 𝜇𝑟 ¤𝜙2 − 𝜕𝑉

𝜕𝑟
,

d
d𝑡
𝜕𝐿

𝜕 ¤𝑟 = 𝜇 ¥𝑟,

(2.1.9)



2.1. 两体问题 19

记 𝐹 (𝑟) = −𝜕𝑉
𝜕𝑟

,套用 Lagrange方程,得

𝜇 ¥𝑟 − 𝜇𝑟 ¤𝜙2 − 𝐹 = 0. (2.1.10)
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Chapter 3

微振动

3.1 微振动

3.1.1 质量系数与弹性系数

考虑稳定约束下的动能

𝑇 = 𝑇2 =
1
2

𝑛∑
𝑖=1

𝑚𝑖

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝜕r𝑖
𝜕𝑞𝛼

· 𝜕r𝑖
𝜕𝑞𝛽

¤𝑞𝛼 ¤𝑞𝛽

=
1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

(
𝑛∑
𝑖=1

𝑚𝑖
𝜕r𝑖
𝜕𝑞𝛼

· 𝜕r𝑖
𝜕𝑞𝛽

)
¤𝑞𝛼 ¤𝑞𝛽

≈ 1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑚𝛼𝛽 ¤𝑞𝛼 ¤𝑞𝛽 . (3.1.1)

这里定义了质量系数 𝑚𝛼𝛽,其为对称矩阵,即 𝑚𝛼𝛽 = 𝑚𝛽𝛼。

定义 3.1:质量系数

𝑚𝛼𝛽 =
𝑛∑
𝑖=1

𝑚𝑖
𝜕r𝑖
𝜕𝑞𝛼

����
𝑞𝛼=0

· 𝜕r𝑖
𝜕𝑞𝛽

����
𝑞𝛽=0

(3.1.2)

为质量系数。

接下来把势能函数 𝑉 = 𝑉 (𝑞) 在平衡位置 𝑞𝛼 = 0处展开,得

𝑉 =((((((
𝑉 (0, . . . , 0) +

���������𝑠∑
𝛼=1

𝜕𝑉

𝜕𝑞𝛼

����
𝑞𝛼=0

𝑞𝛼 + 1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝜕2𝑉

𝜕𝑞𝛼𝜕𝑞𝛽

����
𝑞𝛼=𝑞𝛽=0

𝑞𝛼𝑞𝛽 + . . .

≈ 1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑐𝛼𝛽𝑞𝛼𝑞𝛽 (3.1.3)

这里定义了弹性系数 𝑐𝛼𝛽,其也为对称矩阵,即 𝑐𝛼𝛽 = 𝑐𝛽𝛼。

21



22 CHAPTER 3. 微振动

定义 3.2:弹性系数

𝑐𝛼𝛽 =
𝜕2𝑉

𝜕𝑞𝛼𝜕𝑞𝛽

����
𝑞𝛼=𝑞𝛽=0

(3.1.4)

为弹性系数。

动能是广义速度的正定二次型,势能是广义坐标的正定二次型,所以 Lagrangian 𝐿 = 𝑇 − 𝑉
是广义坐标和广义速度的正定二次型,现在可以写作

𝐿 =
1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑚𝛼𝛽 ¤𝑞𝛼 ¤𝑞𝛽 −
1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑐𝛼𝛽𝑞𝛼𝑞𝛽 . (3.1.5)

3.1.2 运动微分方程

由式 (3.1.5),可得

𝜕𝐿

𝜕 ¤𝑞𝛾
=

𝜕

𝜕 ¤𝑞𝛾
©­«1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑚𝛼𝛽 ¤𝑞𝛼 ¤𝑞𝛽ª®¬
=

1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑚𝛼𝛽𝛿𝛾𝛼 ¤𝑞𝛽 +
1
2

𝑠∑
𝛼=1

𝑠∑
𝛽=1

𝑚𝛼𝛽 ¤𝑞𝛼𝛿𝛾𝛽

=
1
2

𝑠∑
𝛽=1

𝑚𝛾𝛽 ¤𝑞𝛽 +
1
2

𝑠∑
𝛼=1

𝑚𝛼𝛾 ¤𝑞𝛼

=
1
2

𝑠∑
𝛼=1

𝑚𝛾𝛼 ¤𝑞𝛼 + 1
2

𝑠∑
𝛼=1

𝑚𝛾𝛼 ¤𝑞𝛼

=
𝑠∑

𝛼=1
𝑚𝛾𝛼 ¤𝑞𝛼, (3.1.6)

再对时间求导,得

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛾

)
=

d
d𝑡

(
𝑠∑

𝛼=1
𝑚𝛾𝛼 ¤𝑞𝛼

)
=

𝑠∑
𝛼=1

𝑚𝛾𝛼 ¥𝑞𝛼. (3.1.7)

再来看 𝜕𝐿/𝜕𝑞𝛾,与求式 (3.1.6)方法一致,有

𝜕𝐿

𝜕𝑞𝛾
= −

𝑠∑
𝛼=1

𝑐𝛾𝛼𝑞𝛼. (3.1.8)

代入 Euler-Lagrange方程,得
𝑠∑

𝛼=1
𝑚𝛾𝛼 ¥𝑞𝛼 +

𝑠∑
𝛼=1

𝑐𝛾𝛼𝑞𝛼 = 0. (3.1.9)



Chapter 4

Hamilton力学

4.1 Hamilton方程

4.1.1 Legendre变换

设 𝑓 = 𝑓 (𝑥, 𝑦),则

d 𝑓 =
𝜕 𝑓

𝜕𝑥
d𝑥 + 𝜕 𝑓

𝜕𝑦
d𝑦, (4.1.1)

记 𝑢 =
𝜕 𝑓

𝜕𝑥
, 𝑣 =

𝜕 𝑓

𝜕𝑦
,如果把 𝑢, 𝑦 看作新的自变量, 𝑣, 𝑥 看作新的因变量,那么

𝑥 = 𝑥 (𝑢, 𝑦) , 𝑣 = 𝑣 (𝑢, 𝑦) , (4.1.2)

这时函数 𝑓 可以用 𝑢, 𝑦 表示,即 𝑓 = 𝑓 (𝑥 (𝑢, 𝑦) , 𝑦) = 𝐹 (𝑢, 𝑦),则

𝜕𝐹

𝜕𝑢
=
𝜕 𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑢
= 𝑢

𝜕𝑥

𝜕𝑢
, (4.1.3)

𝜕𝐹

𝜕𝑦
=
𝜕 𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑦
+ 𝜕 𝑓

𝜕𝑦
= 𝑢

𝜕𝑥

𝜕𝑦
+ 𝑣, (4.1.4)

将式 (4.1.4)移项,可得

𝑣 = − 𝜕

𝜕𝑦
(−𝐹 + 𝑢𝑥) = −𝜕𝑔

𝜕𝑦
, (4.1.5)

其中 𝑔 (𝑢, 𝑦) = −𝐹 + 𝑢𝑥 = − 𝑓 + 𝜕 𝑓

𝜕𝑥
𝑥。

𝑔 对 𝑢 求偏导数,可得

𝜕𝑔

𝜕𝑢
=
𝜕

𝜕𝑢
(−𝐹 + 𝑢𝑥)

= −𝜕𝐹
𝜕𝑢

+ 𝑥 + 𝑢 𝜕𝑥
𝜕𝑢

= −𝑢 𝜕𝑥
𝜕𝑢

+ 𝑥 + 𝑢 𝜕𝑥
𝜕𝑢

= 𝑥, (4.1.6)
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合起来就是
𝑢(𝑥, 𝑦) = 𝜕 𝑓 (𝑥, 𝑦)

𝜕𝑥
,

𝑣(𝑥, 𝑦) = 𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑦

,

𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦),

=⇒


𝑥 (𝑢, 𝑦) = 𝜕𝑔 (𝑢, 𝑦)

𝜕𝑢
,

𝑣 (𝑢, 𝑦) = −𝜕𝑔 (𝑢, 𝑦)
𝜕𝑦

,

𝑔 (𝑢, 𝑦) = 𝑢 · 𝑥 (𝑢, 𝑦) − 𝐹 (𝑢, 𝑦) ,

(4.1.7)

这种由一组独立变量到另一组独立变量的变换, 称为 Legendre 变换 (Legendre transforma-
tion)。

4.1.2 Hamilton方程

前文中定义的式 (1.3.30) 𝐻 =
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐿,称为 Hamiltonian。

对于单自由度系统,将式 (4.1.7)中的 𝑥, 𝑦, 𝑢, 𝑣, 𝑓 (𝐹), 𝑔 分别替换为 ¤𝑞, 𝑞, 𝑝, ¤𝑝, 𝐿, 𝐻,可得
𝑝 ( ¤𝑞, 𝑞) = 𝜕𝐿 ( ¤𝑞, 𝑞)

𝜕 ¤𝑞 ,

¤𝑝 ( ¤𝑞, 𝑞) = 𝜕𝐿 ( ¤𝑞, 𝑞)
𝜕𝑞

,

𝐿 ( ¤𝑞, 𝑞) = 𝐿 ( ¤𝑞, 𝑞) ,

=⇒


¤𝑞(𝑝, 𝑞) = 𝜕𝐻 (𝑝, 𝑞)

𝜕𝑝
,

¤𝑝(𝑝, 𝑞) = −𝜕𝐻 (𝑝, 𝑞)
𝜕𝑞

,

𝐻 (𝑝, ¤𝑞) = 𝑝 · ¤𝑞(𝑝, 𝑞) − 𝐿 (𝑝, 𝑞).

(4.1.8)

推广一下,把

¤𝑞𝛼 =
𝜕𝐻

𝜕𝑝𝛼
, ¤𝑝𝛼 = − 𝜕𝐻

𝜕𝑞𝛼
(4.1.9)

称为 Hamilton方程 (Hamilton’s equations)或者正则方程 (canonical equations)。

4.2 Poisson括号与 Poisson定理

4.2.1 Poisson括号

若 𝑓 = 𝑓 (𝑡, 𝑞, 𝑝) 是相空间的一个函数,其对时间求导可得

d 𝑓
d𝑡

=
𝜕 𝑓

𝜕𝑡
+

𝑠∑
𝛼=1

(
𝜕 𝑓

𝜕𝑞𝛼
¤𝑞𝛼 + 𝜕 𝑓

𝜕𝑝𝛼
¤𝑝𝛼

)
, (4.2.1)

将 Hamilton方程代入上式,得

d 𝑓
d𝑡

=
𝜕 𝑓

𝜕𝑡
+

𝑠∑
𝛼=1

(
𝜕 𝑓

𝜕𝑞𝛼

𝜕𝐻

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕𝐻

𝜕𝑞𝛼

)
=
𝜕 𝑓

𝜕𝑡
+ [ 𝑓 , 𝐻] . (4.2.2)

为了简化书写,引入 Poisson括号 (Poisson bracket)。
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定义 4.1

设 𝑓 和 𝑔 都是关于 𝑡, 𝑞, 𝑝 的函数,定义 Poisson括号为

[ 𝑓 , 𝑔] = 𝜕 𝑓

𝜕𝑞𝛼

𝜕𝑔

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕𝑔

𝜕𝑞𝛼
. (4.2.3)

若 𝑓 , 𝑔, ℎ都是关于 𝑡, 𝑞, 𝑝 的函数,则有如下性质。

性质 4.1
[ 𝑓 , 𝑓 ] = 0.

性质 4.2
[𝐶, 𝑓 ] = 0,其中 𝐶 是常数。

性质 4.3 反对称性
[ 𝑓 , 𝑔] = −[𝑔, 𝑓 ].

性质 4.4 双线性性
[𝐶 𝑓 , 𝑔] = 𝐶 [ 𝑓 , 𝑔] = [ 𝑓 , 𝐶𝑔],其中 𝐶 是常数。且有 [ 𝑓 , 𝑔 + ℎ] = [ 𝑓 , 𝑔] + [ 𝑓 , ℎ].

性质 4.5 Leibniz 规则 (Leibniz rule)
[ 𝑓 , 𝑔ℎ] = [ 𝑓 , 𝑔]ℎ + 𝑔[ 𝑓 , ℎ].

证明.

[ 𝑓 , 𝑔ℎ] = 𝜕 𝑓

𝜕𝑞𝛼

𝜕 (𝑔ℎ)
𝜕𝑝𝛼

− 𝜕 𝑓

𝜕𝑝𝛼

𝜕 (𝑔ℎ)
𝜕𝑞𝛼

=
𝜕 𝑓

𝜕𝑞𝛼

(
𝜕𝑔

𝜕𝑝𝛼
ℎ + 𝑔 𝜕ℎ

𝜕𝑝𝛼

)
− 𝜕 𝑓

𝜕𝑝𝛼

(
𝜕𝑔

𝜕𝑞𝛼
ℎ + 𝑔 𝜕ℎ

𝜕𝑞𝛼

)
=
𝜕 𝑓

𝜕𝑞𝛼

𝜕𝑔

𝜕𝑝𝛼
ℎ + 𝜕 𝑓

𝜕𝑞𝛼
𝑔
𝜕ℎ

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕𝑔

𝜕𝑞𝛼
ℎ − 𝜕 𝑓

𝜕𝑝𝛼
𝑔
𝜕ℎ

𝜕𝑞𝛼

=

(
𝜕 𝑓

𝜕𝑞𝛼

𝜕𝑔

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕𝑔

𝜕𝑞𝛼

)
ℎ + 𝑔

(
𝜕 𝑓

𝜕𝑞𝛼

𝜕ℎ

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕ℎ

𝜕𝑞𝛼

)
= [ 𝑓 , 𝑔]ℎ + 𝑔[ 𝑓 , ℎ] .

□

性质 4.6

𝜕

𝜕𝑡
[ 𝑓 , 𝑔] =

[
𝜕 𝑓

𝜕𝑡
, 𝑔

]
+

[
𝑓 ,
𝜕𝑔

𝜕𝑡

]
. (4.2.4)
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证明.

𝜕

𝜕𝑡
[ 𝑓 , 𝑔] = 𝜕

𝜕𝑡

(
𝜕 𝑓

𝜕𝑞𝛼

𝜕𝑔

𝜕𝑝𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕𝑔

𝜕𝑞𝛼

)
=

𝜕2 𝑓

𝜕𝑡𝜕𝑞𝛼

𝜕𝑔

𝜕𝑝𝛼
+ 𝜕 𝑓

𝜕𝑞𝛼

𝜕2𝑔

𝜕𝑡𝜕𝑝𝛼
− 𝜕2 𝑓

𝜕𝑡𝜕𝑝𝛼

𝜕𝑔

𝜕𝑞𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕2𝑔

𝜕𝑡𝜕𝑞𝛼

=
𝜕

𝜕𝑞𝛼

(
𝜕 𝑓

𝜕𝑡

)
𝜕𝑔

𝜕𝑝𝛼
+ 𝜕 𝑓

𝜕𝑞𝛼

𝜕

𝜕𝑝𝛼

(
𝜕𝑔

𝜕𝑡

)
− 𝜕

𝜕𝑝𝛼

(
𝜕 𝑓

𝜕𝑡

)
𝜕𝑔

𝜕𝑞𝛼
− 𝜕 𝑓

𝜕𝑝𝛼

𝜕

𝜕𝑞𝛼

(
𝜕𝑔

𝜕𝑡

)
=

[
𝜕 𝑓

𝜕𝑡
, 𝑔

]
+

[
𝑓 ,
𝜕𝑔

𝜕𝑡

]
.

□

性质 4.7

[𝑞𝛼, 𝑓 ] =
𝜕 𝑓

𝜕𝑝𝛼
, [𝑝𝛼, 𝑓 ] = − 𝜕 𝑓

𝜕𝑞𝛼
. (4.2.5)

性质 4.8

[
𝑞𝛼, 𝑞𝛽

]
=

[
𝑝𝛼, 𝑝𝛽

]
= 0,

[
𝑞𝛼, 𝑝𝛽

]
= 𝛿𝛼𝛽 . (4.2.6)

性质 4.9 Jacobi 恒等式 (Jacobi identity)

[ 𝑓 , [𝑔, 𝐻]] + [𝑔, [ℎ, 𝑓 ]] + [𝐻, [ 𝑓 , 𝑔]] = 0. (4.2.7)

Jacobi 恒等式的证明可以参见 Landau 的《力学》一书。其他性质的证明都是很 trival 的,
这里就不再赘述了。

根据性质 4.7,可以把 Hamilton方程式 (4.1.9)写成{
¤𝑞𝛼 = [𝑞𝛼, 𝐻] ,
¤𝑝𝛼 = [𝑝𝛼, 𝐻] .

(4.2.8)

知道 𝑓 是运动积分的充要条件为 d 𝑓 /d𝑡 = 𝜕 𝑓 /𝜕𝑡+[ 𝑓 , 𝐻] = 0,可以考察一下Hamiltonian：

d𝐻
d𝑡

=
𝜕𝐻

𝜕𝑡
+ [𝐻, 𝐻] = 𝜕𝐻

𝜕𝑡
, (4.2.9)

即得如下推论：

推论 4.1
若 𝐻 不显含时间,则 𝐻 是运动积分,系统的 Hamiltonian守恒。
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4.2.2 Poisson定理

定理 4.1
若力学量 𝑓 , 𝑔 不显含时间,则 [ 𝑓 , 𝑔] 也不显含时间。

证明. 已知

d 𝑓
d𝑡

=
𝜕 𝑓

𝜕𝑡
+ [ 𝑓 , 𝐻], (4.2.10)

d𝑔
d𝑡

=
𝜕𝑔

𝜕𝑡
+ [𝑔, 𝐻] . (4.2.11)

由性质 4.9,可得

0 = [𝐻, [ 𝑓 , 𝑔]] + [ 𝑓 , [𝑔, 𝐻]] + [𝑔, [𝐻, 𝑓 ]]
= [𝐻, [ 𝑓 , 𝑔]] + [ 𝑓 , [𝑔, 𝐻]] + [𝑔,−[ 𝑓 , 𝐻]]

= [𝐻, [ 𝑓 , 𝑔]] +
[
𝑓 ,−𝜕𝑔

𝜕𝑡

]
+

[
𝑔,
𝜕 𝑓

𝜕𝑡

]
= [[ 𝑓 , 𝑔], 𝐻] +

[
𝑓 ,
𝜕𝑔

𝜕𝑡

]
+

[
𝜕 𝑓

𝜕𝑡
, 𝑔

]
= [[ 𝑓 , 𝑔], 𝐻] + 𝜕

𝜕𝑡
[ 𝑓 , 𝑔]

=
d
d𝑡
[ 𝑓 , 𝑔] = 0. (4.2.12)

□

4.3 作用量原理

4.3.1 作用量与作用量原理

定义 4.2:作用量 (action)

𝑆 =
∫ 𝑡2

𝑡1

𝐿 (𝑡, 𝑞, ¤𝑞) d𝑡. (4.3.1)

作用量的变分

𝛿𝑆 = 𝛿
∫ 𝑡2

𝑡1

𝐿 d𝑡 = 0 (4.3.2)

称为作用量原理 (action principles),当作用路径两端固定时称为 Hamilton原理 (Hamilton’s
principle)。
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4.3.2 作用量原理的应用

例 4.1
由作用量原理推导 Euler-Lagrange方程。

解. 由式 (4.3.2),可得

𝛿𝑆 = 𝛿
∫ 𝑡2

𝑡1

𝐿 d𝑡 = 0, (4.3.3)

交换变分与积分的次序,得∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

(
𝜕𝐿

𝜕 ¤𝑞𝛼
𝛿 ¤𝑞𝛼 + 𝜕𝐿

𝜕𝑞𝛼
𝛿𝑞𝛼

)
d𝑡 = 0. (4.3.4)

又

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
𝛿 ¤𝑞𝛼 =

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
d
d𝑡
𝛿𝑞𝛼 =

d
d𝑡

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
𝛿𝑞𝛼 −

𝑠∑
𝛼=1

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
𝛿𝑞𝛼, (4.3.5)

代入上式可得∫ 𝑡2

𝑡1

[
d
d𝑡

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
𝛿𝑞𝛼 −

𝑠∑
𝛼=1

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
𝛿𝑞𝛼 +

𝑠∑
𝛼=1

𝜕𝐿

𝜕𝑞𝛼
𝛿𝑞𝛼

]
d𝑡 = 0 (4.3.6)

⇐⇒
[

𝑠∑
𝛼=1

𝜕𝐿

𝜕 ¤𝑞𝛼
𝛿𝑞𝛼

] 𝑡2
𝑡1

−
∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[
d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
− 𝜕𝐿

𝜕𝑞𝛼

]
𝛿𝑞𝛼 d𝑡 = 0, (4.3.7)

又因为端点是固定的,所以 𝛿𝑞𝛼 (𝑡1) = 𝛿𝑞𝛼 (𝑡2) = 0,所以∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[
d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
− 𝜕𝐿

𝜕𝑞𝛼

]
𝛿𝑞𝛼 d𝑡 = 0, (4.3.8)

由 𝛿𝑞𝛼 变分的任意性,可得

d
d𝑡

(
𝜕𝐿

𝜕 ¤𝑞𝛼

)
− 𝜕𝐿

𝜕𝑞𝛼
= 0. (4.3.9)

□

例 4.2
由作用量原理推导 Hamilton方程。

解. 由 𝐻 =
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐿,可得

𝛿𝑆 = 𝛿
∫ 𝑡2

𝑡1

(𝑝𝛼 ¤𝑞𝛼 − 𝐻) d𝑡 = 0, (4.3.10)
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交换变分与积分的次序,得∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[𝛿 (𝑝𝛼 ¤𝑞𝛼) − 𝛿𝐻] d𝑡

=
∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[
𝛿𝑝𝛼 ¤𝑞𝛼 + 𝑝𝛼𝛿 ¤𝑞𝛼 − 𝜕𝐻

𝜕𝑝𝛼
𝛿𝑝𝛼 − 𝜕𝐻

𝜕𝑞𝛼
𝛿𝑞𝛼

]
d𝑡

=
∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[
𝑝𝛼𝛿 ¤𝑞𝛼 +

(
¤𝑞𝛼 − 𝜕𝐻

𝜕𝑝𝛼

)
𝛿𝑝𝛼 − 𝜕𝐻

𝜕𝑞𝛼
𝛿𝑞𝛼

]
d𝑡

=0, (4.3.11)

又

𝑠∑
𝛼=1

𝑝𝛼𝛿 ¤𝑞𝛼 =
𝑠∑

𝛼=1
𝑝𝛼

d
d𝑡
𝛿𝑞𝛼

=
d
d𝑡

𝑠∑
𝛼=1

𝑝𝛼𝛿𝑞𝛼 −
𝑠∑

𝛼=1

(
d
d𝑡
𝑝𝛼

)
𝛿𝑞𝛼

=
d
d𝑡

𝑠∑
𝛼=1

𝑝𝛼𝛿𝑞𝛼 −
𝑠∑

𝛼=1
¤𝑝𝛼𝛿𝑞𝛼, (4.3.12)

代入上式可得∫ 𝑡2

𝑡1

[
d
d𝑡

𝑠∑
𝛼=1

𝑝𝛼𝛿𝑞𝛼 −
𝑠∑

𝛼=1
¤𝑝𝛼𝛿𝑞𝛼 +

𝑠∑
𝛼=1

(
¤𝑞𝛼 − 𝜕𝐻

𝜕𝑝𝛼

)
𝛿𝑝𝛼 −

𝑠∑
𝛼=1

𝜕𝐻

𝜕𝑞𝛼
𝛿𝑞𝛼

]
d𝑡 = 0

(4.3.13)

⇐⇒
𝑠∑

𝛼=1
𝑝𝛼𝛿𝑞𝛼

�����𝑡2
𝑡1

+
∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[(
¤𝑞𝛼 − 𝜕𝐻

𝜕𝑝𝛼

)
𝛿𝑝𝛼 −

(
¤𝑝𝛼 + 𝜕𝐻

𝜕𝑞𝛼

)
𝛿𝑞𝛼

]
d𝑡 = 0,

(4.3.14)

又因为端点是固定的,所以 𝛿𝑞𝛼 (𝑡1) = 𝛿𝑞𝛼 (𝑡2) = 0,所以∫ 𝑡2

𝑡1

𝑠∑
𝛼=1

[(
¤𝑞𝛼 − 𝜕𝐻

𝜕𝑝𝛼

)
𝛿𝑝𝛼 −

(
¤𝑝𝛼 + 𝜕𝐻

𝜕𝑞𝛼

)
𝛿𝑞𝛼

]
d𝑡 = 0, (4.3.15)

由 𝛿𝑞𝛼, 𝛿𝑝𝛼 变分的任意性,可得

¤𝑞𝛼 =
𝜕𝐻

𝜕𝑝𝛼
, ¤𝑝𝛼 = − 𝜕𝐻

𝜕𝑞𝛼
. (4.3.16)

□
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4.4 正则变换

4.4.1 正则变换的条件

定义 4.3:正则变换

设 𝑃𝛼 和 𝑄𝛼 是关于 𝑡, 𝑝𝛼, 𝑞𝛼 的函数。若能找到一个新函数 𝐾 ,使得 Hamilton方程的形
式不变,即

¤𝑄𝛼 =
𝜕𝐾

𝜕𝑃𝛼
, ¤𝑃𝛼 = − 𝜕𝐾

𝜕𝑄𝛼
, (4.4.1)

那么, 称 𝑄𝛼, 𝑃𝛼 是 𝑞𝛼, 𝑝𝛼 的正则变换 (canonical transformation)。𝐾 是正则变换后
新的 Hamiltonian。

由作用量原理可得,正则变换的条件为

𝛿

∫ 𝑡2

𝑡1

(
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐻

)
d𝑡 = 𝛿

∫ 𝑡2

𝑡1

(
𝑠∑

𝛼=1
𝑃𝛼

¤𝑄𝛼 − 𝐾
)

d𝑡 = 0, (4.4.2)

不妨加上一个任意函数𝑈 对时间的导数,即
𝑠∑

𝛼=1
𝑝𝛼 ¤𝑞𝛼 − 𝐻 =

𝑠∑
𝛼=1

𝑃𝛼
¤𝑄𝛼 − 𝐾 + d𝑈

d𝑡
, (4.4.3)

把𝑈 称为正则变换的母函数 (generating function)或生成函数 (generating function)。即有

d𝑈 =
𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

𝑠∑
𝛼=1

𝑃𝛼 d𝑄𝛼 + (𝐾 − 𝐻) d𝑡. (4.4.4)

4.4.2 四型正则变换

1. 𝑈1 = 𝑈1 (𝑡, 𝑞, 𝑄),称为第一型正则变换 (type 1 canonical transformation)。
2. 𝑈2 = 𝑈2 (𝑡, 𝑞, 𝑃),称为第二型正则变换 (type 2 canonical transformation)。
3. 𝑈3 = 𝑈3 (𝑡, 𝑝, 𝑄),称为第三型正则变换 (type 3 canonical transformation)。
4. 𝑈4 = 𝑈4 (𝑡, 𝑝, 𝑃),称为第四型正则变换 (type 4 canonical transformation)。

第一型正则变换

d𝑈1 =
𝑠∑

𝛼=1

𝜕𝑈1

𝜕𝑞𝛼
d𝑞𝛼 +

𝑠∑
𝛼=1

𝜕𝑈1

𝜕𝑄𝛼
d𝑄𝛼 + 𝜕𝑈1

𝜕𝑡
d𝑡. (4.4.5)

令𝑈1 = 𝑈,比较式 (4.4.4)和 (4.4.5),可得
𝑝𝛼 =

𝜕𝑈1

𝜕𝑞𝛼
,

𝑃𝛼 = − 𝜕𝑈1

𝜕𝑄𝛼
,

𝐾 = 𝐻 + 𝜕𝑈1

𝜕𝑡
.

(4.4.6)
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第二型正则变换

d𝑈2 =
𝑠∑

𝛼=1

𝜕𝑈2

𝜕𝑞𝛼
d𝑞𝛼 +

𝑠∑
𝛼=1

𝜕𝑈2

𝜕𝑃𝛼
d𝑃𝛼 + 𝜕𝑈2

𝜕𝑡
d𝑡. (4.4.7)

令𝑈2 = 𝑈 +
𝑠∑

𝛼=1
𝑃𝛼𝑄𝛼,则

d𝑈2 =
𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

�
�
�
�
�
��𝑠∑

𝛼=1
𝑃𝛼 d𝑄𝛼 + (𝐾 − 𝐻) d𝑡 +

�
�

�
�
�

��𝑠∑
𝛼=1

𝑃𝛼 d𝑄𝛼 +
𝑠∑

𝛼=1
𝑄𝛼 d𝑃𝛼. (4.4.8)

比较式 (4.4.4)和 (4.4.8),可得 
𝑝𝛼 =

𝜕𝑈2

𝜕𝑞𝛼
,

𝑄𝛼 =
𝜕𝑈2

𝜕𝑃𝛼
,

𝐾 = 𝐻 + 𝜕𝑈2

𝜕𝑡
.

(4.4.9)

第三型正则变换

d𝑈3 =
𝑠∑

𝛼=1

𝜕𝑈3

𝜕𝑝𝛼
d𝑝𝛼 +

𝑠∑
𝛼=1

𝜕𝑈3

𝜕𝑄𝛼
d𝑄𝛼 + 𝜕𝑈3

𝜕𝑡
d𝑡. (4.4.10)

令𝑈3 = 𝑈 −
𝑠∑

𝛼=1
𝑝𝛼𝑞𝛼,则

d𝑈3 =

�
�
�

�
��𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

𝑠∑
𝛼=1

𝑃𝛼 d𝑄𝛼 + (𝐾 − 𝐻) d𝑡 −
�
�

�
�
��𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

𝑠∑
𝛼=1

𝑞𝛼 d𝑝𝛼. (4.4.11)

比较式 (4.4.4)和 (4.4.11),可得 
𝑞𝛼 = − 𝜕𝑈3

𝜕𝑝𝛼
,

𝑃𝛼 = − 𝜕𝑈3

𝜕𝑄𝛼
,

𝐾 = 𝐻 + 𝜕𝑈3

𝜕𝑡
.

(4.4.12)

第四型正则变换

d𝑈4 =
𝑠∑

𝛼=1

𝜕𝑈4

𝜕𝑝𝛼
d𝑝𝛼 +

𝑠∑
𝛼=1

𝜕𝑈4

𝜕𝑃𝛼
d𝑃𝛼 + 𝜕𝑈4

𝜕𝑡
d𝑡. (4.4.13)
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令𝑈4 = 𝑈 −
𝑠∑

𝛼=1
𝑝𝛼𝑞𝛼 +

𝑠∑
𝛼=1

𝑃𝛼𝑄𝛼,则

d𝑈4 =

�
�
�

�
��𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

�
�
�
�
�
��𝑠∑

𝛼=1
𝑃𝛼 d𝑄𝛼 + (𝐾 − 𝐻) d𝑡 −

�
�
�

�
��𝑠∑

𝛼=1
𝑝𝛼 d𝑞𝛼 −

𝑠∑
𝛼=1

𝑞𝛼 d𝑝𝛼 +
�

�
�
�

�
��𝑠∑

𝛼=1
𝑃𝛼 d𝑄𝛼 +

𝑠∑
𝛼=1

𝑄𝛼 d𝑃𝛼.

(4.4.14)

比较式 (4.4.4)和 (4.4.14),可得 
𝑞𝛼 = − 𝜕𝑈4

𝜕𝑝𝛼
,

𝑄𝛼 =
𝜕𝑈4

𝜕𝑃𝛼
,

𝐾 = 𝐻 + 𝜕𝑈4

𝜕𝑡
.

(4.4.15)

四型正则变换的总结

表 4.1: 四型正则变换

类别 生成函数 正则变换
第一类 𝑈 = 𝑈 (𝑡, 𝑞, 𝑄) 𝑝 = 𝜕𝑈/𝜕𝑞, 𝑃 = −𝜕𝑈/𝜕𝑄
第二类 𝑈 = 𝑈 (𝑡, 𝑞, 𝑃) 𝑝 = 𝜕𝑈/𝜕𝑞, 𝑄 = 𝜕𝑈/𝜕𝑃
第三类 𝑈 = 𝑈 (𝑡, 𝑝, 𝑄) 𝑞 = −𝜕𝑈/𝜕𝑝, 𝑃 = −𝜕𝑈/𝜕𝑄
第四类 𝑈 = 𝑈 (𝑡, 𝑝, 𝑃) 𝑞 = −𝜕𝑈/𝜕𝑝, 𝑄 = 𝜕𝑈/𝜕𝑃

注：𝐾 = 𝐻 + 𝜕𝑈/𝜕𝑡。
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